1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "RecordReadThread.h"
18 
19 #include <sys/resource.h>
20 #include <unistd.h>
21 
22 #include <algorithm>
23 #include <unordered_map>
24 
25 #include "environment.h"
26 #include "event_type.h"
27 #include "record.h"
28 #include "utils.h"
29 
30 namespace simpleperf {
31 
32 static constexpr size_t kDefaultLowBufferLevel = 10 * kMegabyte;
33 static constexpr size_t kDefaultCriticalBufferLevel = 5 * kMegabyte;
34 
RecordBuffer(size_t buffer_size)35 RecordBuffer::RecordBuffer(size_t buffer_size)
36     : read_head_(0), write_head_(0), buffer_size_(buffer_size), buffer_(new char[buffer_size]) {}
37 
GetFreeSize() const38 size_t RecordBuffer::GetFreeSize() const {
39   size_t write_head = write_head_.load(std::memory_order_relaxed);
40   size_t read_head = read_head_.load(std::memory_order_relaxed);
41   size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
42   if (write_head <= write_tail) {
43     return write_tail - write_head;
44   }
45   return buffer_size_ - write_head + write_tail;
46 }
47 
AllocWriteSpace(size_t record_size)48 char* RecordBuffer::AllocWriteSpace(size_t record_size) {
49   size_t write_head = write_head_.load(std::memory_order_relaxed);
50   size_t read_head = read_head_.load(std::memory_order_acquire);
51   size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
52   cur_write_record_size_ = record_size;
53   if (write_head < write_tail) {
54     if (write_head + record_size > write_tail) {
55       return nullptr;
56     }
57   } else if (write_head + record_size > buffer_size_) {
58     // Not enough space at the end of the buffer, need to wrap to the start of the buffer.
59     if (write_tail < record_size) {
60       return nullptr;
61     }
62     if (buffer_size_ - write_head >= sizeof(perf_event_header)) {
63       // Set the size field in perf_event_header to 0. So GetCurrentRecord() can wrap to the start
64       // of the buffer when size is 0.
65       memset(buffer_.get() + write_head, 0, sizeof(perf_event_header));
66     }
67     cur_write_record_size_ += buffer_size_ - write_head;
68     write_head = 0;
69   }
70   return buffer_.get() + write_head;
71 }
72 
FinishWrite()73 void RecordBuffer::FinishWrite() {
74   size_t write_head = write_head_.load(std::memory_order_relaxed);
75   write_head = (write_head + cur_write_record_size_) % buffer_size_;
76   write_head_.store(write_head, std::memory_order_release);
77 }
78 
GetCurrentRecord()79 char* RecordBuffer::GetCurrentRecord() {
80   size_t write_head = write_head_.load(std::memory_order_acquire);
81   size_t read_head = read_head_.load(std::memory_order_relaxed);
82   if (read_head == write_head) {
83     return nullptr;
84   }
85   perf_event_header header;
86   if (read_head > write_head) {
87     if (buffer_size_ - read_head < sizeof(header) ||
88         (memcpy(&header, buffer_.get() + read_head, sizeof(header)) && header.size == 0)) {
89       // Need to wrap to the start of the buffer.
90       cur_read_record_size_ += buffer_size_ - read_head;
91       read_head = 0;
92       memcpy(&header, buffer_.get(), sizeof(header));
93     }
94   } else {
95     memcpy(&header, buffer_.get() + read_head, sizeof(header));
96   }
97   cur_read_record_size_ += header.size;
98   return buffer_.get() + read_head;
99 }
100 
MoveToNextRecord()101 void RecordBuffer::MoveToNextRecord() {
102   size_t read_head = read_head_.load(std::memory_order_relaxed);
103   read_head = (read_head + cur_read_record_size_) % buffer_size_;
104   read_head_.store(read_head, std::memory_order_release);
105   cur_read_record_size_ = 0;
106 }
107 
RecordParser(const perf_event_attr & attr)108 RecordParser::RecordParser(const perf_event_attr& attr)
109     : sample_type_(attr.sample_type),
110       read_format_(attr.read_format),
111       sample_regs_count_(__builtin_popcountll(attr.sample_regs_user)) {
112   size_t pos = sizeof(perf_event_header);
113   uint64_t mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_IP;
114   pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
115   if (sample_type_ & PERF_SAMPLE_TID) {
116     pid_pos_in_sample_records_ = pos;
117     pos += sizeof(uint64_t);
118   }
119   if (sample_type_ & PERF_SAMPLE_TIME) {
120     time_pos_in_sample_records_ = pos;
121     pos += sizeof(uint64_t);
122   }
123   mask = PERF_SAMPLE_ADDR | PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU |
124          PERF_SAMPLE_PERIOD;
125   pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
126   read_pos_in_sample_records_ = pos;
127   if ((sample_type_ & PERF_SAMPLE_TIME) && attr.sample_id_all) {
128     mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_ID;
129     time_rpos_in_non_sample_records_ =
130         (__builtin_popcountll(sample_type_ & mask) + 1) * sizeof(uint64_t);
131   }
132 }
133 
GetTimePos(const perf_event_header & header) const134 size_t RecordParser::GetTimePos(const perf_event_header& header) const {
135   if (header.type == PERF_RECORD_SAMPLE) {
136     return time_pos_in_sample_records_;
137   }
138   if (time_rpos_in_non_sample_records_ != 0u &&
139       time_rpos_in_non_sample_records_ < header.size - sizeof(perf_event_header)) {
140     return header.size - time_rpos_in_non_sample_records_;
141   }
142   return 0;
143 }
144 
GetStackSizePos(const std::function<void (size_t,size_t,void *)> & read_record_fn) const145 size_t RecordParser::GetStackSizePos(
146     const std::function<void(size_t, size_t, void*)>& read_record_fn) const {
147   size_t pos = read_pos_in_sample_records_;
148   if (sample_type_ & PERF_SAMPLE_READ) {
149     uint64_t nr = 1;
150     if (read_format_ & PERF_FORMAT_GROUP) {
151       read_record_fn(pos, sizeof(nr), &nr);
152       pos += sizeof(uint64_t);
153     }
154     size_t u64_count = nr;
155     u64_count += (read_format_ & PERF_FORMAT_TOTAL_TIME_ENABLED) ? 1 : 0;
156     u64_count += (read_format_ & PERF_FORMAT_TOTAL_TIME_RUNNING) ? 1 : 0;
157     u64_count += (read_format_ & PERF_FORMAT_ID) ? nr : 0;
158     pos += u64_count * sizeof(uint64_t);
159   }
160   if (sample_type_ & PERF_SAMPLE_CALLCHAIN) {
161     uint64_t ip_nr;
162     read_record_fn(pos, sizeof(ip_nr), &ip_nr);
163     pos += (ip_nr + 1) * sizeof(uint64_t);
164   }
165   if (sample_type_ & PERF_SAMPLE_RAW) {
166     uint32_t size;
167     read_record_fn(pos, sizeof(size), &size);
168     pos += size + sizeof(uint32_t);
169   }
170   if (sample_type_ & PERF_SAMPLE_BRANCH_STACK) {
171     uint64_t stack_nr;
172     read_record_fn(pos, sizeof(stack_nr), &stack_nr);
173     pos += sizeof(uint64_t) + stack_nr * sizeof(BranchStackItemType);
174   }
175   if (sample_type_ & PERF_SAMPLE_REGS_USER) {
176     uint64_t abi;
177     read_record_fn(pos, sizeof(abi), &abi);
178     pos += (1 + (abi == 0 ? 0 : sample_regs_count_)) * sizeof(uint64_t);
179   }
180   return (sample_type_ & PERF_SAMPLE_STACK_USER) ? pos : 0;
181 }
182 
KernelRecordReader(EventFd * event_fd)183 KernelRecordReader::KernelRecordReader(EventFd* event_fd) : event_fd_(event_fd) {
184   size_t buffer_size;
185   buffer_ = event_fd_->GetMappedBuffer(buffer_size);
186   buffer_mask_ = buffer_size - 1;
187 }
188 
GetDataFromKernelBuffer()189 bool KernelRecordReader::GetDataFromKernelBuffer() {
190   data_size_ = event_fd_->GetAvailableMmapDataSize(data_pos_);
191   if (data_size_ == 0) {
192     return false;
193   }
194   init_data_size_ = data_size_;
195   record_header_.size = 0;
196   return true;
197 }
198 
ReadRecord(size_t pos,size_t size,void * dest)199 void KernelRecordReader::ReadRecord(size_t pos, size_t size, void* dest) {
200   pos = (pos + data_pos_) & buffer_mask_;
201   size_t copy_size = std::min(size, buffer_mask_ + 1 - pos);
202   memcpy(dest, buffer_ + pos, copy_size);
203   if (copy_size < size) {
204     memcpy(static_cast<char*>(dest) + copy_size, buffer_, size - copy_size);
205   }
206 }
207 
MoveToNextRecord(const RecordParser & parser)208 bool KernelRecordReader::MoveToNextRecord(const RecordParser& parser) {
209   data_pos_ = (data_pos_ + record_header_.size) & buffer_mask_;
210   data_size_ -= record_header_.size;
211   if (data_size_ == 0) {
212     event_fd_->DiscardMmapData(init_data_size_);
213     init_data_size_ = 0;
214     return false;
215   }
216   ReadRecord(0, sizeof(record_header_), &record_header_);
217   size_t time_pos = parser.GetTimePos(record_header_);
218   if (time_pos != 0) {
219     ReadRecord(time_pos, sizeof(record_time_), &record_time_);
220   }
221   return true;
222 }
223 
RecordReadThread(size_t record_buffer_size,const perf_event_attr & attr,size_t min_mmap_pages,size_t max_mmap_pages,size_t aux_buffer_size,bool allow_truncating_samples,bool exclude_perf)224 RecordReadThread::RecordReadThread(size_t record_buffer_size, const perf_event_attr& attr,
225                                    size_t min_mmap_pages, size_t max_mmap_pages,
226                                    size_t aux_buffer_size, bool allow_truncating_samples,
227                                    bool exclude_perf)
228     : record_buffer_(record_buffer_size),
229       record_parser_(attr),
230       attr_(attr),
231       min_mmap_pages_(min_mmap_pages),
232       max_mmap_pages_(max_mmap_pages),
233       aux_buffer_size_(aux_buffer_size) {
234   if (attr.sample_type & PERF_SAMPLE_STACK_USER) {
235     stack_size_in_sample_record_ = attr.sample_stack_user;
236   }
237   record_buffer_low_level_ = std::min(record_buffer_size / 4, kDefaultLowBufferLevel);
238   record_buffer_critical_level_ = std::min(record_buffer_size / 6, kDefaultCriticalBufferLevel);
239   LOG(VERBOSE) << "user buffer size = " << record_buffer_size
240                << ", low_level size = " << record_buffer_low_level_
241                << ", critical_level size = " << record_buffer_critical_level_;
242   if (!allow_truncating_samples) {
243     record_buffer_low_level_ = record_buffer_critical_level_;
244   }
245   if (exclude_perf) {
246     exclude_pid_ = getpid();
247   }
248 }
249 
~RecordReadThread()250 RecordReadThread::~RecordReadThread() {
251   if (read_thread_) {
252     StopReadThread();
253   }
254 }
255 
RegisterDataCallback(IOEventLoop & loop,const std::function<bool ()> & data_callback)256 bool RecordReadThread::RegisterDataCallback(IOEventLoop& loop,
257                                             const std::function<bool()>& data_callback) {
258   int cmd_fd[2];
259   int data_fd[2];
260   if (pipe2(cmd_fd, O_CLOEXEC) != 0 || pipe2(data_fd, O_CLOEXEC) != 0) {
261     PLOG(ERROR) << "pipe2";
262     return false;
263   }
264   read_cmd_fd_.reset(cmd_fd[0]);
265   write_cmd_fd_.reset(cmd_fd[1]);
266   cmd_ = NO_CMD;
267   read_data_fd_.reset(data_fd[0]);
268   write_data_fd_.reset(data_fd[1]);
269   has_data_notification_ = false;
270   if (!loop.AddReadEvent(read_data_fd_, data_callback)) {
271     return false;
272   }
273   read_thread_.reset(new std::thread([&]() { RunReadThread(); }));
274   return true;
275 }
276 
AddEventFds(const std::vector<EventFd * > & event_fds)277 bool RecordReadThread::AddEventFds(const std::vector<EventFd*>& event_fds) {
278   return SendCmdToReadThread(CMD_ADD_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
279 }
280 
RemoveEventFds(const std::vector<EventFd * > & event_fds)281 bool RecordReadThread::RemoveEventFds(const std::vector<EventFd*>& event_fds) {
282   return SendCmdToReadThread(CMD_REMOVE_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
283 }
284 
SyncKernelBuffer()285 bool RecordReadThread::SyncKernelBuffer() {
286   return SendCmdToReadThread(CMD_SYNC_KERNEL_BUFFER, nullptr);
287 }
288 
StopReadThread()289 bool RecordReadThread::StopReadThread() {
290   bool result = true;
291   if (read_thread_ != nullptr) {
292     result = SendCmdToReadThread(CMD_STOP_THREAD, nullptr);
293     if (result) {
294       read_thread_->join();
295       read_thread_ = nullptr;
296     }
297   }
298   return result;
299 }
300 
SendCmdToReadThread(Cmd cmd,void * cmd_arg)301 bool RecordReadThread::SendCmdToReadThread(Cmd cmd, void* cmd_arg) {
302   {
303     std::lock_guard<std::mutex> lock(cmd_mutex_);
304     cmd_ = cmd;
305     cmd_arg_ = cmd_arg;
306   }
307   char unused = 0;
308   if (TEMP_FAILURE_RETRY(write(write_cmd_fd_, &unused, 1)) != 1) {
309     return false;
310   }
311   std::unique_lock<std::mutex> lock(cmd_mutex_);
312   while (cmd_ != NO_CMD) {
313     cmd_finish_cond_.wait(lock);
314   }
315   return cmd_result_;
316 }
317 
GetRecord()318 std::unique_ptr<Record> RecordReadThread::GetRecord() {
319   record_buffer_.MoveToNextRecord();
320   char* p = record_buffer_.GetCurrentRecord();
321   if (p != nullptr) {
322     std::unique_ptr<Record> r = ReadRecordFromBuffer(attr_, p, record_buffer_.BufferEnd());
323     CHECK(r);
324     if (r->type() == PERF_RECORD_AUXTRACE) {
325       auto auxtrace = static_cast<AuxTraceRecord*>(r.get());
326       record_buffer_.AddCurrentRecordSize(auxtrace->data->aux_size);
327       auxtrace->location.addr = r->Binary() + r->size();
328     }
329     return r;
330   }
331   if (has_data_notification_) {
332     char unused;
333     TEMP_FAILURE_RETRY(read(read_data_fd_, &unused, 1));
334     has_data_notification_ = false;
335   }
336   return nullptr;
337 }
338 
RunReadThread()339 void RecordReadThread::RunReadThread() {
340   IncreaseThreadPriority();
341   IOEventLoop loop;
342   CHECK(loop.AddReadEvent(read_cmd_fd_, [&]() { return HandleCmd(loop); }));
343   loop.RunLoop();
344 }
345 
IncreaseThreadPriority()346 void RecordReadThread::IncreaseThreadPriority() {
347   // TODO: use real time priority for root.
348   rlimit rlim;
349   int result = getrlimit(RLIMIT_NICE, &rlim);
350   if (result == 0 && rlim.rlim_cur == 40) {
351     result = setpriority(PRIO_PROCESS, gettid(), -20);
352     if (result == 0) {
353       LOG(VERBOSE) << "Priority of record read thread is increased";
354     }
355   }
356 }
357 
GetCmd()358 RecordReadThread::Cmd RecordReadThread::GetCmd() {
359   std::lock_guard<std::mutex> lock(cmd_mutex_);
360   return cmd_;
361 }
362 
HandleCmd(IOEventLoop & loop)363 bool RecordReadThread::HandleCmd(IOEventLoop& loop) {
364   char unused;
365   TEMP_FAILURE_RETRY(read(read_cmd_fd_, &unused, 1));
366   bool result = true;
367   switch (GetCmd()) {
368     case CMD_ADD_EVENT_FDS:
369       result = HandleAddEventFds(loop, *static_cast<std::vector<EventFd*>*>(cmd_arg_));
370       break;
371     case CMD_REMOVE_EVENT_FDS:
372       result = HandleRemoveEventFds(*static_cast<std::vector<EventFd*>*>(cmd_arg_));
373       break;
374     case CMD_SYNC_KERNEL_BUFFER:
375       result = ReadRecordsFromKernelBuffer();
376       break;
377     case CMD_STOP_THREAD:
378       result = loop.ExitLoop();
379       break;
380     default:
381       LOG(ERROR) << "Unknown cmd: " << GetCmd();
382       result = false;
383       break;
384   }
385   std::lock_guard<std::mutex> lock(cmd_mutex_);
386   cmd_ = NO_CMD;
387   cmd_result_ = result;
388   cmd_finish_cond_.notify_one();
389   return true;
390 }
391 
HandleAddEventFds(IOEventLoop & loop,const std::vector<EventFd * > & event_fds)392 bool RecordReadThread::HandleAddEventFds(IOEventLoop& loop,
393                                          const std::vector<EventFd*>& event_fds) {
394   std::unordered_map<int, EventFd*> cpu_map;
395   for (size_t pages = max_mmap_pages_; pages >= min_mmap_pages_; pages >>= 1) {
396     bool success = true;
397     bool report_error = pages == min_mmap_pages_;
398     for (EventFd* fd : event_fds) {
399       auto it = cpu_map.find(fd->Cpu());
400       if (it == cpu_map.end()) {
401         if (!fd->CreateMappedBuffer(pages, report_error)) {
402           success = false;
403           break;
404         }
405         if (IsEtmEventType(fd->attr().type)) {
406           if (!fd->CreateAuxBuffer(aux_buffer_size_, report_error)) {
407             fd->DestroyMappedBuffer();
408             success = false;
409             break;
410           }
411           has_etm_events_ = true;
412         }
413         cpu_map[fd->Cpu()] = fd;
414       } else {
415         if (!fd->ShareMappedBuffer(*(it->second), pages == min_mmap_pages_)) {
416           success = false;
417           break;
418         }
419       }
420     }
421     if (success) {
422       LOG(VERBOSE) << "Each kernel buffer is " << pages << " pages.";
423       break;
424     }
425     for (auto& pair : cpu_map) {
426       pair.second->DestroyMappedBuffer();
427       pair.second->DestroyAuxBuffer();
428     }
429     cpu_map.clear();
430   }
431   if (cpu_map.empty()) {
432     return false;
433   }
434   for (auto& pair : cpu_map) {
435     if (!pair.second->StartPolling(loop, [this]() { return ReadRecordsFromKernelBuffer(); })) {
436       return false;
437     }
438     kernel_record_readers_.emplace_back(pair.second);
439   }
440   return true;
441 }
442 
HandleRemoveEventFds(const std::vector<EventFd * > & event_fds)443 bool RecordReadThread::HandleRemoveEventFds(const std::vector<EventFd*>& event_fds) {
444   for (auto& event_fd : event_fds) {
445     if (event_fd->HasMappedBuffer()) {
446       auto it = std::find_if(
447           kernel_record_readers_.begin(), kernel_record_readers_.end(),
448           [&](const KernelRecordReader& reader) { return reader.GetEventFd() == event_fd; });
449       if (it != kernel_record_readers_.end()) {
450         kernel_record_readers_.erase(it);
451         event_fd->StopPolling();
452         event_fd->DestroyMappedBuffer();
453         event_fd->DestroyAuxBuffer();
454       }
455     }
456   }
457   return true;
458 }
459 
CompareRecordTime(KernelRecordReader * r1,KernelRecordReader * r2)460 static bool CompareRecordTime(KernelRecordReader* r1, KernelRecordReader* r2) {
461   return r1->RecordTime() > r2->RecordTime();
462 }
463 
464 // When reading from mmap buffers, we prefer reading from all buffers at once rather than reading
465 // one buffer at a time. Because by reading all buffers at once, we can merge records from
466 // different buffers easily in memory. Otherwise, we have to sort records with greater effort.
ReadRecordsFromKernelBuffer()467 bool RecordReadThread::ReadRecordsFromKernelBuffer() {
468   do {
469     std::vector<KernelRecordReader*> readers;
470     for (auto& reader : kernel_record_readers_) {
471       if (reader.GetDataFromKernelBuffer()) {
472         readers.push_back(&reader);
473       }
474     }
475     bool has_data = false;
476     if (!readers.empty()) {
477       has_data = true;
478       if (readers.size() == 1u) {
479         // Only one buffer has data, process it directly.
480         while (readers[0]->MoveToNextRecord(record_parser_)) {
481           PushRecordToRecordBuffer(readers[0]);
482         }
483       } else {
484         // Use a binary heap to merge records from different buffers. As records from the same
485         // buffer are already ordered by time, we only need to merge the first record from all
486         // buffers. And each time a record is popped from the heap, we put the next record from its
487         // buffer into the heap.
488         for (auto& reader : readers) {
489           reader->MoveToNextRecord(record_parser_);
490         }
491         std::make_heap(readers.begin(), readers.end(), CompareRecordTime);
492         size_t size = readers.size();
493         while (size > 0) {
494           std::pop_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
495           PushRecordToRecordBuffer(readers[size - 1]);
496           if (readers[size - 1]->MoveToNextRecord(record_parser_)) {
497             std::push_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
498           } else {
499             size--;
500           }
501         }
502       }
503     }
504     ReadAuxDataFromKernelBuffer(&has_data);
505     if (!has_data) {
506       break;
507     }
508     // Having collected everything available, this is a good time to
509     // try to re-enabled any events that might have been disabled by
510     // the kernel.
511     for (auto event_fd : event_fds_disabled_by_kernel_) {
512       event_fd->SetEnableEvent(true);
513     }
514     event_fds_disabled_by_kernel_.clear();
515     if (!SendDataNotificationToMainThread()) {
516       return false;
517     }
518     // If there are no commands, we can loop until there is no more data from the kernel.
519   } while (GetCmd() == NO_CMD);
520   return true;
521 }
522 
PushRecordToRecordBuffer(KernelRecordReader * kernel_record_reader)523 void RecordReadThread::PushRecordToRecordBuffer(KernelRecordReader* kernel_record_reader) {
524   const perf_event_header& header = kernel_record_reader->RecordHeader();
525   if (header.type == PERF_RECORD_SAMPLE && exclude_pid_ != -1) {
526     uint32_t pid;
527     kernel_record_reader->ReadRecord(record_parser_.GetPidPosInSampleRecord(), sizeof(pid), &pid);
528     if (pid == exclude_pid_) {
529       return;
530     }
531   }
532   if (header.type == PERF_RECORD_SAMPLE && stack_size_in_sample_record_ > 1024) {
533     size_t free_size = record_buffer_.GetFreeSize();
534     if (free_size < record_buffer_critical_level_) {
535       // When the free size in record buffer is below critical level, drop sample records to save
536       // space for more important records (like mmap or fork records).
537       stat_.userspace_lost_samples++;
538       return;
539     }
540     size_t stack_size_limit = stack_size_in_sample_record_;
541     if (free_size < record_buffer_low_level_) {
542       // When the free size in record buffer is below low level, truncate the stack data in sample
543       // records to 1K. This makes the unwinder unwind only part of the callchains, but hopefully
544       // the call chain joiner can complete the callchains.
545       stack_size_limit = 1024;
546     }
547     size_t stack_size_pos =
548         record_parser_.GetStackSizePos([&](size_t pos, size_t size, void* dest) {
549           return kernel_record_reader->ReadRecord(pos, size, dest);
550         });
551     uint64_t stack_size;
552     kernel_record_reader->ReadRecord(stack_size_pos, sizeof(stack_size), &stack_size);
553     if (stack_size > 0) {
554       size_t dyn_stack_size_pos = stack_size_pos + sizeof(stack_size) + stack_size;
555       uint64_t dyn_stack_size;
556       kernel_record_reader->ReadRecord(dyn_stack_size_pos, sizeof(dyn_stack_size), &dyn_stack_size);
557       if (dyn_stack_size == 0) {
558         // If stack_user_data.dyn_size == 0, it may be because the kernel misses the patch to
559         // update dyn_size, like in N9 (See b/22612370). So assume all stack data is valid if
560         // dyn_size == 0.
561         // TODO: Add cts test.
562         dyn_stack_size = stack_size;
563       }
564       // When simpleperf requests the kernel to dump 64K stack per sample, it will allocate 64K
565       // space in each sample to store stack data. However, a thread may use less stack than 64K.
566       // So not all the 64K stack data in a sample is valid, and we only need to keep valid stack
567       // data, whose size is dyn_stack_size.
568       uint64_t new_stack_size = Align(std::min<uint64_t>(dyn_stack_size, stack_size_limit), 8);
569       if (stack_size > new_stack_size) {
570         // Remove part of the stack data.
571         perf_event_header new_header = header;
572         new_header.size -= stack_size - new_stack_size;
573         char* p = record_buffer_.AllocWriteSpace(new_header.size);
574         if (p != nullptr) {
575           memcpy(p, &new_header, sizeof(new_header));
576           size_t pos = sizeof(new_header);
577           kernel_record_reader->ReadRecord(pos, stack_size_pos - pos, p + pos);
578           memcpy(p + stack_size_pos, &new_stack_size, sizeof(uint64_t));
579           pos = stack_size_pos + sizeof(uint64_t);
580           kernel_record_reader->ReadRecord(pos, new_stack_size, p + pos);
581           memcpy(p + pos + new_stack_size, &new_stack_size, sizeof(uint64_t));
582           record_buffer_.FinishWrite();
583           if (new_stack_size < dyn_stack_size) {
584             stat_.userspace_truncated_stack_samples++;
585           }
586         } else {
587           stat_.userspace_lost_samples++;
588         }
589         return;
590       }
591     }
592   }
593   char* p = record_buffer_.AllocWriteSpace(header.size);
594   if (p != nullptr) {
595     kernel_record_reader->ReadRecord(0, header.size, p);
596     if (header.type == PERF_RECORD_AUX) {
597       AuxRecord r;
598       if (r.Parse(attr_, p, p + header.size) && (r.data->flags & PERF_AUX_FLAG_TRUNCATED)) {
599         // When the kernel sees aux output flagged with PERF_AUX_FLAG_TRUNCATED,
600         // it sets a pending disable on the event:
601         // https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/events/ring_buffer.c?h=v5.13#n516
602         // The truncated flag is set by the Coresight driver when some trace was lost,
603         // which can be caused by a full buffer. Therefore, try to re-enable the event
604         // only after we have collected the aux data.
605         event_fds_disabled_by_kernel_.insert(kernel_record_reader->GetEventFd());
606       }
607     } else if (header.type == PERF_RECORD_LOST) {
608       LostRecord r;
609       if (r.Parse(attr_, p, p + header.size)) {
610         stat_.kernelspace_lost_records += static_cast<size_t>(r.lost);
611       }
612     }
613     record_buffer_.FinishWrite();
614   } else {
615     if (header.type == PERF_RECORD_SAMPLE) {
616       stat_.userspace_lost_samples++;
617     } else {
618       stat_.userspace_lost_non_samples++;
619     }
620   }
621 }
622 
ReadAuxDataFromKernelBuffer(bool * has_data)623 void RecordReadThread::ReadAuxDataFromKernelBuffer(bool* has_data) {
624   if (!has_etm_events_) {
625     return;
626   }
627   for (auto& reader : kernel_record_readers_) {
628     EventFd* event_fd = reader.GetEventFd();
629     if (event_fd->HasAuxBuffer()) {
630       char* buf[2];
631       size_t size[2];
632       uint64_t offset = event_fd->GetAvailableAuxData(&buf[0], &size[0], &buf[1], &size[1]);
633       size_t aux_size = size[0] + size[1];
634       if (aux_size == 0) {
635         continue;
636       }
637       *has_data = true;
638       AuxTraceRecord auxtrace(Align(aux_size, 8), offset, event_fd->Cpu(), 0, event_fd->Cpu());
639       size_t alloc_size = auxtrace.size() + auxtrace.data->aux_size;
640       char* p = nullptr;
641       if ((record_buffer_.GetFreeSize() < alloc_size + record_buffer_critical_level_) ||
642           (p = record_buffer_.AllocWriteSpace(alloc_size)) == nullptr) {
643         stat_.lost_aux_data_size += aux_size;
644       } else {
645         CHECK(p != nullptr);
646         MoveToBinaryFormat(auxtrace.Binary(), auxtrace.size(), p);
647         MoveToBinaryFormat(buf[0], size[0], p);
648         if (size[1] != 0) {
649           MoveToBinaryFormat(buf[1], size[1], p);
650         }
651         size_t pad_size = auxtrace.data->aux_size - aux_size;
652         if (pad_size != 0) {
653           uint64_t pad = 0;
654           memcpy(p, &pad, pad_size);
655         }
656         record_buffer_.FinishWrite();
657         stat_.aux_data_size += aux_size;
658         LOG(DEBUG) << "record aux data " << aux_size << " bytes";
659       }
660       event_fd->DiscardAuxData(aux_size);
661     }
662   }
663 }
664 
SendDataNotificationToMainThread()665 bool RecordReadThread::SendDataNotificationToMainThread() {
666   if (has_etm_events_) {
667     // For ETM recording, the default buffer size is large enough to hold ETM data for several
668     // seconds. To reduce impact of processing ETM data (especially when --decode-etm is used),
669     // delay processing ETM data until the buffer is half full.
670     if (record_buffer_.GetFreeSize() >= record_buffer_.size() / 2) {
671       return true;
672     }
673   }
674   if (!has_data_notification_.load(std::memory_order_relaxed)) {
675     has_data_notification_ = true;
676     char unused = 0;
677     if (TEMP_FAILURE_RETRY(write(write_data_fd_, &unused, 1)) != 1) {
678       PLOG(ERROR) << "write";
679       return false;
680     }
681   }
682   return true;
683 }
684 
685 }  // namespace simpleperf
686