1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
19
20 #include <vector>
21
22 #include "arch/instruction_set.h"
23 #include "base/macros.h"
24 #include "debug/method_debug_info.h"
25 #include "dwarf/debug_frame_opcode_writer.h"
26 #include "dwarf/dwarf_constants.h"
27 #include "dwarf/headers.h"
28 #include "elf/elf_builder.h"
29
30 namespace art HIDDEN {
31 namespace debug {
32
33 static constexpr bool kWriteDebugFrameHdr = false;
34
35 // Binary search table is not useful if the number of entries is small.
36 // In particular, this avoids it for the in-memory JIT mini-debug-info.
37 static constexpr size_t kMinDebugFrameHdrEntries = 100;
38
WriteCIE(InstructionSet isa,std::vector<uint8_t> * buffer)39 static void WriteCIE(InstructionSet isa, /*inout*/ std::vector<uint8_t>* buffer) {
40 using Reg = dwarf::Reg;
41 // Scratch registers should be marked as undefined. This tells the
42 // debugger that its value in the previous frame is not recoverable.
43 bool is64bit = Is64BitInstructionSet(isa);
44 switch (isa) {
45 case InstructionSet::kArm:
46 case InstructionSet::kThumb2: {
47 dwarf::DebugFrameOpCodeWriter<> opcodes;
48 opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP).
49 // core registers.
50 for (int reg = 0; reg < 13; reg++) {
51 if (reg < 4 || reg == 12) {
52 opcodes.Undefined(Reg::ArmCore(reg));
53 } else {
54 opcodes.SameValue(Reg::ArmCore(reg));
55 }
56 }
57 // fp registers.
58 for (int reg = 0; reg < 32; reg++) {
59 if (reg < 16) {
60 opcodes.Undefined(Reg::ArmFp(reg));
61 } else {
62 opcodes.SameValue(Reg::ArmFp(reg));
63 }
64 }
65 auto return_reg = Reg::ArmCore(14); // R14(LR).
66 WriteCIE(is64bit, return_reg, opcodes, buffer);
67 return;
68 }
69 case InstructionSet::kArm64: {
70 dwarf::DebugFrameOpCodeWriter<> opcodes;
71 opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP).
72 // core registers.
73 for (int reg = 0; reg < 30; reg++) {
74 if (reg < 8 || reg == 16 || reg == 17) {
75 opcodes.Undefined(Reg::Arm64Core(reg));
76 } else {
77 opcodes.SameValue(Reg::Arm64Core(reg));
78 }
79 }
80 // fp registers.
81 for (int reg = 0; reg < 32; reg++) {
82 if (reg < 8 || reg >= 16) {
83 opcodes.Undefined(Reg::Arm64Fp(reg));
84 } else {
85 opcodes.SameValue(Reg::Arm64Fp(reg));
86 }
87 }
88 auto return_reg = Reg::Arm64Core(30); // R30(LR).
89 WriteCIE(is64bit, return_reg, opcodes, buffer);
90 return;
91 }
92 case InstructionSet::kRiscv64: {
93 dwarf::DebugFrameOpCodeWriter<> opcodes;
94 opcodes.DefCFA(Reg::Riscv64Core(2), 0); // X2(SP).
95 // core registers.
96 for (int reg = 3; reg < 32; reg++) { // Skip X0 (Zero), X1 (RA) and X2 (SP).
97 if ((reg >= 5 && reg < 8) || (reg >= 10 && reg < 18) || reg >= 28) {
98 opcodes.Undefined(Reg::Riscv64Core(reg));
99 } else {
100 opcodes.SameValue(Reg::Riscv64Core(reg));
101 }
102 }
103 // fp registers.
104 for (int reg = 0; reg < 32; reg++) {
105 if (reg < 8 || (reg >=10 && reg < 18) || reg >= 28) {
106 opcodes.Undefined(Reg::Riscv64Fp(reg));
107 } else {
108 opcodes.SameValue(Reg::Riscv64Fp(reg));
109 }
110 }
111 auto return_reg = Reg::Riscv64Core(1); // X1(RA).
112 WriteCIE(is64bit, return_reg, opcodes, buffer);
113 return;
114 }
115 case InstructionSet::kX86: {
116 // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
117 constexpr bool generate_opcodes_for_x86_fp = false;
118 dwarf::DebugFrameOpCodeWriter<> opcodes;
119 opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP).
120 opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP).
121 // core registers.
122 for (int reg = 0; reg < 8; reg++) {
123 if (reg <= 3) {
124 opcodes.Undefined(Reg::X86Core(reg));
125 } else if (reg == 4) {
126 // Stack pointer.
127 } else {
128 opcodes.SameValue(Reg::X86Core(reg));
129 }
130 }
131 // fp registers.
132 if (generate_opcodes_for_x86_fp) {
133 for (int reg = 0; reg < 8; reg++) {
134 opcodes.Undefined(Reg::X86Fp(reg));
135 }
136 }
137 auto return_reg = Reg::X86Core(8); // R8(EIP).
138 WriteCIE(is64bit, return_reg, opcodes, buffer);
139 return;
140 }
141 case InstructionSet::kX86_64: {
142 dwarf::DebugFrameOpCodeWriter<> opcodes;
143 opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP).
144 opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP).
145 // core registers.
146 for (int reg = 0; reg < 16; reg++) {
147 if (reg == 4) {
148 // Stack pointer.
149 } else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP.
150 opcodes.Undefined(Reg::X86_64Core(reg));
151 } else {
152 opcodes.SameValue(Reg::X86_64Core(reg));
153 }
154 }
155 // fp registers.
156 for (int reg = 0; reg < 16; reg++) {
157 if (reg < 12) {
158 opcodes.Undefined(Reg::X86_64Fp(reg));
159 } else {
160 opcodes.SameValue(Reg::X86_64Fp(reg));
161 }
162 }
163 auto return_reg = Reg::X86_64Core(16); // R16(RIP).
164 WriteCIE(is64bit, return_reg, opcodes, buffer);
165 return;
166 }
167 case InstructionSet::kNone:
168 break;
169 }
170 LOG(FATAL) << "Cannot write CIE frame for ISA " << isa;
171 UNREACHABLE();
172 }
173
174 template<typename ElfTypes>
WriteCFISection(ElfBuilder<ElfTypes> * builder,const ArrayRef<const MethodDebugInfo> & method_infos)175 void WriteCFISection(ElfBuilder<ElfTypes>* builder,
176 const ArrayRef<const MethodDebugInfo>& method_infos) {
177 // The methods can be written in any order.
178 // Let's therefore sort them in the lexicographical order of the opcodes.
179 // This has no effect on its own. However, if the final .debug_frame section is
180 // compressed it reduces the size since similar opcodes sequences are grouped.
181 std::vector<const MethodDebugInfo*> sorted_method_infos;
182 sorted_method_infos.reserve(method_infos.size());
183 for (size_t i = 0; i < method_infos.size(); i++) {
184 if (!method_infos[i].cfi.empty() && !method_infos[i].deduped) {
185 sorted_method_infos.push_back(&method_infos[i]);
186 }
187 }
188 if (sorted_method_infos.empty()) {
189 return;
190 }
191 std::stable_sort(
192 sorted_method_infos.begin(),
193 sorted_method_infos.end(),
194 [](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) {
195 ArrayRef<const uint8_t> l = lhs->cfi;
196 ArrayRef<const uint8_t> r = rhs->cfi;
197 return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
198 });
199
200 std::vector<uint32_t> binary_search_table;
201 bool binary_search_table_is_valid = kWriteDebugFrameHdr;
202 if (binary_search_table_is_valid) {
203 binary_search_table.reserve(2 * sorted_method_infos.size());
204 }
205
206 // Write .debug_frame section.
207 auto* cfi_section = builder->GetDebugFrame();
208 {
209 cfi_section->Start();
210 const bool is64bit = Is64BitInstructionSet(builder->GetIsa());
211 std::vector<uint8_t> buffer; // Small temporary buffer.
212 WriteCIE(builder->GetIsa(), &buffer);
213 cfi_section->WriteFully(buffer.data(), buffer.size());
214 buffer.clear();
215 for (const MethodDebugInfo* mi : sorted_method_infos) {
216 DCHECK(!mi->deduped);
217 DCHECK(!mi->cfi.empty());
218 uint64_t code_address = mi->code_address +
219 (mi->is_code_address_text_relative ? builder->GetText()->GetAddress() : 0);
220 if (kWriteDebugFrameHdr) {
221 // Defensively check that the code address really fits.
222 DCHECK_LE(code_address, std::numeric_limits<uint32_t>::max());
223 binary_search_table_is_valid &= code_address <= std::numeric_limits<uint32_t>::max();
224 binary_search_table.push_back(static_cast<uint32_t>(code_address));
225 binary_search_table.push_back(cfi_section->GetPosition());
226 }
227 dwarf::WriteFDE(is64bit,
228 /* cie_pointer= */ 0,
229 code_address,
230 mi->code_size,
231 mi->cfi,
232 &buffer);
233 cfi_section->WriteFully(buffer.data(), buffer.size());
234 buffer.clear();
235 }
236 cfi_section->End();
237 }
238
239 if (binary_search_table_is_valid && method_infos.size() >= kMinDebugFrameHdrEntries) {
240 std::sort(binary_search_table.begin(), binary_search_table.end());
241
242 // Custom Android section. It is very similar to the official .eh_frame_hdr format.
243 std::vector<uint8_t> header_buffer;
244 dwarf::Writer<> header(&header_buffer);
245 header.PushUint8(1); // Version.
246 header.PushUint8(dwarf::DW_EH_PE_omit); // Encoding of .eh_frame pointer - none.
247 header.PushUint8(dwarf::DW_EH_PE_udata4); // Encoding of binary search table size.
248 header.PushUint8(dwarf::DW_EH_PE_udata4); // Encoding of binary search table data.
249 header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2));
250
251 auto* header_section = builder->GetDebugFrameHdr();
252 header_section->Start();
253 header_section->WriteFully(header_buffer.data(), header_buffer.size());
254 header_section->WriteFully(binary_search_table.data(),
255 binary_search_table.size() * sizeof(binary_search_table[0]));
256 header_section->End();
257 }
258 }
259
260 } // namespace debug
261 } // namespace art
262
263 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
264
265