• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2011 The Android Open Source Project
3   *
4   * Licensed under the Apache License, Version 2.0 (the "License");
5   * you may not use this file except in compliance with the License.
6   * You may obtain a copy of the License at
7   *
8   *      http://www.apache.org/licenses/LICENSE-2.0
9   *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  #include <stdio.h>
18  
19  #include <utils/Log.h>
20  
21  #include "Fusion.h"
22  
23  namespace android {
24  
25  // -----------------------------------------------------------------------
26  
27  /*==================== BEGIN FUSION SENSOR PARAMETER =========================*/
28  
29  /* Note:
30   *   If a platform uses software fusion, it is necessary to tune the following
31   *   parameters to fit the hardware sensors prior to release.
32   *
33   *   The DEFAULT_ parameters will be used in FUSION_9AXIS and FUSION_NOMAG mode.
34   *   The GEOMAG_ parameters will be used in FUSION_NOGYRO mode.
35   */
36  
37  /*
38   * GYRO_VAR gives the measured variance of the gyro's output per
39   * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
40   * which is independent of the sampling frequency.
41   *
42   * The variance of gyro's output at a given sampling period can be
43   * calculated as:
44   *      variance(T) = GYRO_VAR / T
45   *
46   * The variance of the INTEGRATED OUTPUT at a given sampling period can be
47   * calculated as:
48   *       variance_integrate_output(T) = GYRO_VAR * T
49   */
50  static const float DEFAULT_GYRO_VAR = 1e-7;      // (rad/s)^2 / Hz
51  static const float DEFAULT_GYRO_BIAS_VAR = 1e-12;  // (rad/s)^2 / s (guessed)
52  static const float GEOMAG_GYRO_VAR = 1e-4;      // (rad/s)^2 / Hz
53  static const float GEOMAG_GYRO_BIAS_VAR = 1e-8;  // (rad/s)^2 / s (guessed)
54  
55  /*
56   * Standard deviations of accelerometer and magnetometer
57   */
58  static const float DEFAULT_ACC_STDEV  = 0.015f; // m/s^2 (measured 0.08 / CDD 0.05)
59  static const float DEFAULT_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
60  static const float GEOMAG_ACC_STDEV  = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
61  static const float GEOMAG_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
62  
63  
64  /* ====================== END FUSION SENSOR PARAMETER ========================*/
65  
66  static const float SYMMETRY_TOLERANCE = 1e-10f;
67  
68  /*
69   * Accelerometer updates will not be performed near free fall to avoid
70   * ill-conditioning and div by zeros.
71   * Threshhold: 10% of g, in m/s^2
72   */
73  static const float NOMINAL_GRAVITY = 9.81f;
74  static const float FREE_FALL_THRESHOLD = 0.1f * (NOMINAL_GRAVITY);
75  
76  /*
77   * The geomagnetic-field should be between 30uT and 60uT.
78   * Fields strengths greater than this likely indicate a local magnetic
79   * disturbance which we do not want to update into the fused frame.
80   */
81  static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
82  static const float MAX_VALID_MAGNETIC_FIELD_SQ =
83          MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
84  
85  /*
86   * Values of the field smaller than this should be ignored in fusion to avoid
87   * ill-conditioning. This state can happen with anomalous local magnetic
88   * disturbances canceling the Earth field.
89   */
90  static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
91  static const float MIN_VALID_MAGNETIC_FIELD_SQ =
92          MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
93  
94  /*
95   * If the cross product of two vectors has magnitude squared less than this,
96   * we reject it as invalid due to alignment of the vectors.
97   * This threshold is used to check for the case where the magnetic field sample
98   * is parallel to the gravity field, which can happen in certain places due
99   * to magnetic field disturbances.
100   */
101  static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
102  static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
103      MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
104  
105  static const float SQRT_3 = 1.732f;
106  static const float WVEC_EPS = 1e-4f/SQRT_3;
107  // -----------------------------------------------------------------------
108  
109  template <typename TYPE, size_t C, size_t R>
scaleCovariance(const mat<TYPE,C,R> & A,const mat<TYPE,C,C> & P)110  static mat<TYPE, R, R> scaleCovariance(
111          const mat<TYPE, C, R>& A,
112          const mat<TYPE, C, C>& P) {
113      // A*P*transpose(A);
114      mat<TYPE, R, R> APAt;
115      for (size_t r=0 ; r<R ; r++) {
116          for (size_t j=r ; j<R ; j++) {
117              double apat(0);
118              for (size_t c=0 ; c<C ; c++) {
119                  double v(A[c][r]*P[c][c]*0.5);
120                  for (size_t k=c+1 ; k<C ; k++)
121                      v += A[k][r] * P[c][k];
122                  apat += 2 * v * A[c][j];
123              }
124              APAt[j][r] = apat;
125              APAt[r][j] = apat;
126          }
127      }
128      return APAt;
129  }
130  
131  template <typename TYPE, typename OTHER_TYPE>
crossMatrix(const vec<TYPE,3> & p,OTHER_TYPE diag)132  static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
133      mat<TYPE, 3, 3> r;
134      r[0][0] = diag;
135      r[1][1] = diag;
136      r[2][2] = diag;
137      r[0][1] = p.z;
138      r[1][0] =-p.z;
139      r[0][2] =-p.y;
140      r[2][0] = p.y;
141      r[1][2] = p.x;
142      r[2][1] =-p.x;
143      return r;
144  }
145  
146  
147  template<typename TYPE, size_t SIZE>
148  class Covariance {
149      mat<TYPE, SIZE, SIZE> mSumXX;
150      vec<TYPE, SIZE> mSumX;
151      size_t mN;
152  public:
Covariance()153      Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
update(const vec<TYPE,SIZE> & x)154      void update(const vec<TYPE, SIZE>& x) {
155          mSumXX += x*transpose(x);
156          mSumX  += x;
157          mN++;
158      }
operator ()() const159      mat<TYPE, SIZE, SIZE> operator()() const {
160          const float N = 1.0f / mN;
161          return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
162      }
reset()163      void reset() {
164          mN = 0;
165          mSumXX = 0;
166          mSumX = 0;
167      }
getCount() const168      size_t getCount() const {
169          return mN;
170      }
171  };
172  
173  // -----------------------------------------------------------------------
174  
Fusion()175  Fusion::Fusion() {
176      Phi[0][1] = 0;
177      Phi[1][1] = 1;
178  
179      Ba.x = 0;
180      Ba.y = 0;
181      Ba.z = 1;
182  
183      Bm.x = 0;
184      Bm.y = 1;
185      Bm.z = 0;
186  
187      x0 = 0;
188      x1 = 0;
189  
190      init();
191  }
192  
init(int mode)193  void Fusion::init(int mode) {
194      mInitState = 0;
195  
196      mGyroRate = 0;
197  
198      mCount[0] = 0;
199      mCount[1] = 0;
200      mCount[2] = 0;
201  
202      mData = 0;
203      mMode = mode;
204  
205      if (mMode != FUSION_NOGYRO) { //normal or game rotation
206          mParam.gyroVar = DEFAULT_GYRO_VAR;
207          mParam.gyroBiasVar = DEFAULT_GYRO_BIAS_VAR;
208          mParam.accStdev = DEFAULT_ACC_STDEV;
209          mParam.magStdev = DEFAULT_MAG_STDEV;
210      } else {
211          mParam.gyroVar = GEOMAG_GYRO_VAR;
212          mParam.gyroBiasVar = GEOMAG_GYRO_BIAS_VAR;
213          mParam.accStdev = GEOMAG_ACC_STDEV;
214          mParam.magStdev = GEOMAG_MAG_STDEV;
215      }
216  }
217  
initFusion(const vec4_t & q,float dT)218  void Fusion::initFusion(const vec4_t& q, float dT)
219  {
220      // initial estimate: E{ x(t0) }
221      x0 = q;
222      x1 = 0;
223  
224      // process noise covariance matrix: G.Q.Gt, with
225      //
226      //  G = | -1 0 |        Q = | q00 q10 |
227      //      |  0 1 |            | q01 q11 |
228      //
229      // q00 = sv^2.dt + 1/3.su^2.dt^3
230      // q10 = q01 = 1/2.su^2.dt^2
231      // q11 = su^2.dt
232      //
233  
234      const float dT2 = dT*dT;
235      const float dT3 = dT2*dT;
236  
237      // variance of integrated output at 1/dT Hz (random drift)
238      const float q00 = mParam.gyroVar * dT + 0.33333f * mParam.gyroBiasVar * dT3;
239  
240      // variance of drift rate ramp
241      const float q11 = mParam.gyroBiasVar * dT;
242      const float q10 = 0.5f * mParam.gyroBiasVar * dT2;
243      const float q01 = q10;
244  
245      GQGt[0][0] =  q00;      // rad^2
246      GQGt[1][0] = -q10;
247      GQGt[0][1] = -q01;
248      GQGt[1][1] =  q11;      // (rad/s)^2
249  
250      // initial covariance: Var{ x(t0) }
251      // TODO: initialize P correctly
252      P = 0;
253  }
254  
hasEstimate() const255  bool Fusion::hasEstimate() const {
256      return ((mInitState & MAG) || (mMode == FUSION_NOMAG)) &&
257             ((mInitState & GYRO) || (mMode == FUSION_NOGYRO)) &&
258             (mInitState & ACC);
259  }
260  
checkInitComplete(int what,const vec3_t & d,float dT)261  bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
262      if (hasEstimate())
263          return true;
264  
265      if (what == ACC) {
266          mData[0] += d * (1/length(d));
267          mCount[0]++;
268          mInitState |= ACC;
269          if (mMode == FUSION_NOGYRO ) {
270              mGyroRate = dT;
271          }
272      } else if (what == MAG) {
273          mData[1] += d * (1/length(d));
274          mCount[1]++;
275          mInitState |= MAG;
276      } else if (what == GYRO) {
277          mGyroRate = dT;
278          mData[2] += d*dT;
279          mCount[2]++;
280          mInitState |= GYRO;
281      }
282  
283      if (hasEstimate()) {
284          // Average all the values we collected so far
285          mData[0] *= 1.0f/mCount[0];
286          if (mMode != FUSION_NOMAG) {
287              mData[1] *= 1.0f/mCount[1];
288          }
289          mData[2] *= 1.0f/mCount[2];
290  
291          // calculate the MRPs from the data collection, this gives us
292          // a rough estimate of our initial state
293          mat33_t R;
294          vec3_t  up(mData[0]);
295          vec3_t  east;
296  
297          if (mMode != FUSION_NOMAG) {
298              east = normalize(cross_product(mData[1], up));
299          } else {
300              east = getOrthogonal(up);
301          }
302  
303          vec3_t north(cross_product(up, east));
304          R << east << north << up;
305          const vec4_t q = matrixToQuat(R);
306  
307          initFusion(q, mGyroRate);
308      }
309  
310      return false;
311  }
312  
handleGyro(const vec3_t & w,float dT)313  void Fusion::handleGyro(const vec3_t& w, float dT) {
314      if (!checkInitComplete(GYRO, w, dT))
315          return;
316  
317      predict(w, dT);
318  }
319  
handleAcc(const vec3_t & a,float dT)320  status_t Fusion::handleAcc(const vec3_t& a, float dT) {
321      if (!checkInitComplete(ACC, a, dT))
322          return BAD_VALUE;
323  
324      // ignore acceleration data if we're close to free-fall
325      const float l = length(a);
326      if (l < FREE_FALL_THRESHOLD) {
327          return BAD_VALUE;
328      }
329  
330      const float l_inv = 1.0f/l;
331  
332      if ( mMode == FUSION_NOGYRO ) {
333          //geo mag
334          vec3_t w_dummy;
335          w_dummy = x1; //bias
336          predict(w_dummy, dT);
337      }
338  
339      if ( mMode == FUSION_NOMAG) {
340          vec3_t m;
341          m = getRotationMatrix()*Bm;
342          update(m, Bm, mParam.magStdev);
343      }
344  
345      vec3_t unityA = a * l_inv;
346      const float d = sqrtf(fabsf(l- NOMINAL_GRAVITY));
347      const float p = l_inv * mParam.accStdev*expf(d);
348  
349      update(unityA, Ba, p);
350      return NO_ERROR;
351  }
352  
handleMag(const vec3_t & m)353  status_t Fusion::handleMag(const vec3_t& m) {
354      if (!checkInitComplete(MAG, m))
355          return BAD_VALUE;
356  
357      // the geomagnetic-field should be between 30uT and 60uT
358      // reject if too large to avoid spurious magnetic sources
359      const float magFieldSq = length_squared(m);
360      if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
361          return BAD_VALUE;
362      } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
363          // Also reject if too small since we will get ill-defined (zero mag)
364          // cross-products below
365          return BAD_VALUE;
366      }
367  
368      // Orthogonalize the magnetic field to the gravity field, mapping it into
369      // tangent to Earth.
370      const vec3_t up( getRotationMatrix() * Ba );
371      const vec3_t east( cross_product(m, up) );
372  
373      // If the m and up vectors align, the cross product magnitude will
374      // approach 0.
375      // Reject this case as well to avoid div by zero problems and
376      // ill-conditioning below.
377      if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
378          return BAD_VALUE;
379      }
380  
381      // If we have created an orthogonal magnetic field successfully,
382      // then pass it in as the update.
383      vec3_t north( cross_product(up, east) );
384  
385      const float l_inv = 1 / length(north);
386      north *= l_inv;
387  
388      update(north, Bm,  mParam.magStdev*l_inv);
389      return NO_ERROR;
390  }
391  
checkState()392  void Fusion::checkState() {
393      // P needs to stay positive semidefinite or the fusion diverges. When we
394      // detect divergence, we reset the fusion.
395      // TODO(braun): Instead, find the reason for the divergence and fix it.
396  
397      if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
398          !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
399          ALOGW("Sensor fusion diverged; resetting state.");
400          P = 0;
401      }
402  }
403  
getAttitude() const404  vec4_t Fusion::getAttitude() const {
405      return x0;
406  }
407  
getBias() const408  vec3_t Fusion::getBias() const {
409      return x1;
410  }
411  
getRotationMatrix() const412  mat33_t Fusion::getRotationMatrix() const {
413      return quatToMatrix(x0);
414  }
415  
getF(const vec4_t & q)416  mat34_t Fusion::getF(const vec4_t& q) {
417      mat34_t F;
418  
419      // This is used to compute the derivative of q
420      // F = | [q.xyz]x |
421      //     |  -q.xyz  |
422  
423      F[0].x = q.w;   F[1].x =-q.z;   F[2].x = q.y;
424      F[0].y = q.z;   F[1].y = q.w;   F[2].y =-q.x;
425      F[0].z =-q.y;   F[1].z = q.x;   F[2].z = q.w;
426      F[0].w =-q.x;   F[1].w =-q.y;   F[2].w =-q.z;
427      return F;
428  }
429  
predict(const vec3_t & w,float dT)430  void Fusion::predict(const vec3_t& w, float dT) {
431      const vec4_t q  = x0;
432      const vec3_t b  = x1;
433      vec3_t we = w - b;
434  
435      if (length(we) < WVEC_EPS) {
436          we = (we[0]>0.f)?WVEC_EPS:-WVEC_EPS;
437      }
438      // q(k+1) = O(we)*q(k)
439      // --------------------
440      //
441      // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x                   psi |
442      //        | -psi'                              cos(0.5*||w||*dT) |
443      //
444      // psi = sin(0.5*||w||*dT)*w / ||w||
445      //
446      //
447      // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
448      // ----------------------------------------
449      //
450      // G = | -I33    0 |
451      //     |    0  I33 |
452      //
453      //  Phi = | Phi00 Phi10 |
454      //        |   0     1   |
455      //
456      //  Phi00 =   I33
457      //          - [w]x   * sin(||w||*dt)/||w||
458      //          + [w]x^2 * (1-cos(||w||*dT))/||w||^2
459      //
460      //  Phi10 =   [w]x   * (1        - cos(||w||*dt))/||w||^2
461      //          - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
462      //          - I33*dT
463  
464      const mat33_t I33(1);
465      const mat33_t I33dT(dT);
466      const mat33_t wx(crossMatrix(we, 0));
467      const mat33_t wx2(wx*wx);
468      const float lwedT = length(we)*dT;
469      const float hlwedT = 0.5f*lwedT;
470      const float ilwe = 1.f/length(we);
471      const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
472      const float k1 = sinf(lwedT);
473      const float k2 = cosf(hlwedT);
474      const vec3_t psi(sinf(hlwedT)*ilwe*we);
475      const mat33_t O33(crossMatrix(-psi, k2));
476      mat44_t O;
477      O[0].xyz = O33[0];  O[0].w = -psi.x;
478      O[1].xyz = O33[1];  O[1].w = -psi.y;
479      O[2].xyz = O33[2];  O[2].w = -psi.z;
480      O[3].xyz = psi;     O[3].w = k2;
481  
482      Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
483      Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
484  
485      x0 = O*q;
486  
487      if (x0.w < 0)
488          x0 = -x0;
489  
490      P = Phi*P*transpose(Phi) + GQGt;
491  
492      checkState();
493  }
494  
update(const vec3_t & z,const vec3_t & Bi,float sigma)495  void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
496      vec4_t q(x0);
497      // measured vector in body space: h(p) = A(p)*Bi
498      const mat33_t A(quatToMatrix(q));
499      const vec3_t Bb(A*Bi);
500  
501      // Sensitivity matrix H = dh(p)/dp
502      // H = [ L 0 ]
503      const mat33_t L(crossMatrix(Bb, 0));
504  
505      // gain...
506      // K = P*Ht / [H*P*Ht + R]
507      vec<mat33_t, 2> K;
508      const mat33_t R(sigma*sigma);
509      const mat33_t S(scaleCovariance(L, P[0][0]) + R);
510      const mat33_t Si(invert(S));
511      const mat33_t LtSi(transpose(L)*Si);
512      K[0] = P[0][0] * LtSi;
513      K[1] = transpose(P[1][0])*LtSi;
514  
515      // update...
516      // P = (I-K*H) * P
517      // P -= K*H*P
518      // | K0 | * | L 0 | * P = | K0*L  0 | * | P00  P10 | = | K0*L*P00  K0*L*P10 |
519      // | K1 |                 | K1*L  0 |   | P01  P11 |   | K1*L*P00  K1*L*P10 |
520      // Note: the Joseph form is numerically more stable and given by:
521      //     P = (I-KH) * P * (I-KH)' + K*R*R'
522      const mat33_t K0L(K[0] * L);
523      const mat33_t K1L(K[1] * L);
524      P[0][0] -= K0L*P[0][0];
525      P[1][1] -= K1L*P[1][0];
526      P[1][0] -= K0L*P[1][0];
527      P[0][1] = transpose(P[1][0]);
528  
529      const vec3_t e(z - Bb);
530      const vec3_t dq(K[0]*e);
531  
532      q += getF(q)*(0.5f*dq);
533      x0 = normalize_quat(q);
534  
535      if (mMode != FUSION_NOMAG) {
536          const vec3_t db(K[1]*e);
537          x1 += db;
538      }
539  
540      checkState();
541  }
542  
getOrthogonal(const vec3_t & v)543  vec3_t Fusion::getOrthogonal(const vec3_t &v) {
544      vec3_t w;
545      if (fabsf(v[0])<= fabsf(v[1]) && fabsf(v[0]) <= fabsf(v[2]))  {
546          w[0]=0.f;
547          w[1] = v[2];
548          w[2] = -v[1];
549      } else if (fabsf(v[1]) <= fabsf(v[2])) {
550          w[0] = v[2];
551          w[1] = 0.f;
552          w[2] = -v[0];
553      }else {
554          w[0] = v[1];
555          w[1] = -v[0];
556          w[2] = 0.f;
557      }
558      return normalize(w);
559  }
560  
561  
562  // -----------------------------------------------------------------------
563  
564  }; // namespace android
565  
566