1 // Copyright 2020, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! This module implements safe wrappers for some crypto operations required by
16 //! Keystore 2.0.
17 
18 mod error;
19 pub mod zvec;
20 pub use error::Error;
21 use keystore2_crypto_bindgen::{
22     extractSubjectFromCertificate, hmacSha256, randomBytes, AES_gcm_decrypt, AES_gcm_encrypt,
23     ECDHComputeKey, ECKEYGenerateKey, ECKEYMarshalPrivateKey, ECKEYParsePrivateKey,
24     ECPOINTOct2Point, ECPOINTPoint2Oct, EC_KEY_free, EC_KEY_get0_public_key, EC_POINT_free,
25     HKDFExpand, HKDFExtract, EC_KEY, EC_MAX_BYTES, EC_POINT, EVP_MAX_MD_SIZE, PBKDF2,
26 };
27 use std::convert::TryFrom;
28 use std::convert::TryInto;
29 use std::marker::PhantomData;
30 pub use zvec::ZVec;
31 
32 /// Length of the expected initialization vector.
33 pub const GCM_IV_LENGTH: usize = 12;
34 /// Length of the expected AEAD TAG.
35 pub const TAG_LENGTH: usize = 16;
36 /// Length of an AES 256 key in bytes.
37 pub const AES_256_KEY_LENGTH: usize = 32;
38 /// Length of an AES 128 key in bytes.
39 pub const AES_128_KEY_LENGTH: usize = 16;
40 /// Length of the expected salt for key from password generation.
41 pub const SALT_LENGTH: usize = 16;
42 /// Length of an HMAC-SHA256 tag in bytes.
43 pub const HMAC_SHA256_LEN: usize = 32;
44 
45 /// Older versions of keystore produced IVs with four extra
46 /// ignored zero bytes at the end; recognise and trim those.
47 pub const LEGACY_IV_LENGTH: usize = 16;
48 
49 /// Generate an AES256 key, essentially 32 random bytes from the underlying
50 /// boringssl library discretely stuffed into a ZVec.
generate_aes256_key() -> Result<ZVec, Error>51 pub fn generate_aes256_key() -> Result<ZVec, Error> {
52     let mut key = ZVec::new(AES_256_KEY_LENGTH)?;
53     // Safety: key has the same length as the requested number of random bytes.
54     if unsafe { randomBytes(key.as_mut_ptr(), AES_256_KEY_LENGTH) } {
55         Ok(key)
56     } else {
57         Err(Error::RandomNumberGenerationFailed)
58     }
59 }
60 
61 /// Generate a salt.
generate_salt() -> Result<Vec<u8>, Error>62 pub fn generate_salt() -> Result<Vec<u8>, Error> {
63     generate_random_data(SALT_LENGTH)
64 }
65 
66 /// Generate random data of the given size.
generate_random_data(size: usize) -> Result<Vec<u8>, Error>67 pub fn generate_random_data(size: usize) -> Result<Vec<u8>, Error> {
68     let mut data = vec![0; size];
69     // Safety: data has the same length as the requested number of random bytes.
70     if unsafe { randomBytes(data.as_mut_ptr(), size) } {
71         Ok(data)
72     } else {
73         Err(Error::RandomNumberGenerationFailed)
74     }
75 }
76 
77 /// Perform HMAC-SHA256.
hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error>78 pub fn hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error> {
79     let mut tag = vec![0; HMAC_SHA256_LEN];
80     // Safety: The first two pairs of arguments must point to const buffers with
81     // size given by the second arg of the pair.  The final pair of arguments
82     // must point to an output buffer with size given by the second arg of the
83     // pair.
84     match unsafe {
85         hmacSha256(key.as_ptr(), key.len(), msg.as_ptr(), msg.len(), tag.as_mut_ptr(), tag.len())
86     } {
87         true => Ok(tag),
88         false => Err(Error::HmacSha256Failed),
89     }
90 }
91 
92 /// Uses AES GCM to decipher a message given an initialization vector, aead tag, and key.
93 /// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based
94 /// on the key length.
95 /// This function returns the plaintext message in a ZVec because it is assumed that
96 /// it contains sensitive information that should be zeroed from memory before its buffer is
97 /// freed. Input key is taken as a slice for flexibility, but it is recommended that it is held
98 /// in a ZVec as well.
aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error>99 pub fn aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error> {
100     // Old versions of aes_gcm_encrypt produced 16 byte IVs, but the last four bytes were ignored
101     // so trim these to the correct size.
102     let iv = match iv.len() {
103         GCM_IV_LENGTH => iv,
104         LEGACY_IV_LENGTH => &iv[..GCM_IV_LENGTH],
105         _ => return Err(Error::InvalidIvLength),
106     };
107     if tag.len() != TAG_LENGTH {
108         return Err(Error::InvalidAeadTagLength);
109     }
110 
111     match key.len() {
112         AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
113         _ => return Err(Error::InvalidKeyLength),
114     }
115 
116     let mut result = ZVec::new(data.len())?;
117 
118     // Safety: The first two arguments must point to buffers with a size given by the third
119     // argument. We pass the length of the key buffer along with the key.
120     // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
121     match unsafe {
122         AES_gcm_decrypt(
123             data.as_ptr(),
124             result.as_mut_ptr(),
125             data.len(),
126             key.as_ptr(),
127             key.len(),
128             iv.as_ptr(),
129             tag.as_ptr(),
130         )
131     } {
132         true => Ok(result),
133         false => Err(Error::DecryptionFailed),
134     }
135 }
136 
137 /// Uses AES GCM to encrypt a message given a key.
138 /// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based on
139 /// the key length. The function generates an initialization vector. The return value is a tuple
140 /// of `(ciphertext, iv, tag)`.
aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error>141 pub fn aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error> {
142     let mut iv = vec![0; GCM_IV_LENGTH];
143     // Safety: iv is GCM_IV_LENGTH bytes long.
144     if !unsafe { randomBytes(iv.as_mut_ptr(), GCM_IV_LENGTH) } {
145         return Err(Error::RandomNumberGenerationFailed);
146     }
147 
148     match key.len() {
149         AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
150         _ => return Err(Error::InvalidKeyLength),
151     }
152 
153     let mut ciphertext: Vec<u8> = vec![0; plaintext.len()];
154     let mut tag: Vec<u8> = vec![0; TAG_LENGTH];
155     // Safety: The first two arguments must point to buffers with a size given by the third
156     // argument. We pass the length of the key buffer along with the key.
157     // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
158     if unsafe {
159         AES_gcm_encrypt(
160             plaintext.as_ptr(),
161             ciphertext.as_mut_ptr(),
162             plaintext.len(),
163             key.as_ptr(),
164             key.len(),
165             iv.as_ptr(),
166             tag.as_mut_ptr(),
167         )
168     } {
169         Ok((ciphertext, iv, tag))
170     } else {
171         Err(Error::EncryptionFailed)
172     }
173 }
174 
175 /// A high-entropy synthetic password from which an AES key may be derived.
176 pub enum Password<'a> {
177     /// Borrow an existing byte array
178     Ref(&'a [u8]),
179     /// Use an owned ZVec to store the key
180     Owned(ZVec),
181 }
182 
183 impl<'a> From<&'a [u8]> for Password<'a> {
from(pw: &'a [u8]) -> Self184     fn from(pw: &'a [u8]) -> Self {
185         Self::Ref(pw)
186     }
187 }
188 
189 impl<'a> Password<'a> {
get_key(&'a self) -> &'a [u8]190     fn get_key(&'a self) -> &'a [u8] {
191         match self {
192             Self::Ref(b) => b,
193             Self::Owned(z) => z,
194         }
195     }
196 
197     /// Derives a key from the given password and salt, using PBKDF2 with 8192 iterations.
198     ///
199     /// The salt length must be 16 bytes, and the output key length must be 16 or 32 bytes.
200     ///
201     /// This function exists only for backwards compatibility reasons.  Keystore now receives only
202     /// high-entropy synthetic passwords, which do not require key stretching.
derive_key_pbkdf2(&self, salt: &[u8], out_len: usize) -> Result<ZVec, Error>203     pub fn derive_key_pbkdf2(&self, salt: &[u8], out_len: usize) -> Result<ZVec, Error> {
204         if salt.len() != SALT_LENGTH {
205             return Err(Error::InvalidSaltLength);
206         }
207         match out_len {
208             AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
209             _ => return Err(Error::InvalidKeyLength),
210         }
211 
212         let pw = self.get_key();
213         let mut result = ZVec::new(out_len)?;
214 
215         // Safety: We checked that the salt is exactly 16 bytes long. The other pointers are valid,
216         // and have matching lengths.
217         unsafe {
218             PBKDF2(
219                 result.as_mut_ptr(),
220                 result.len(),
221                 pw.as_ptr() as *const std::os::raw::c_char,
222                 pw.len(),
223                 salt.as_ptr(),
224             )
225         };
226 
227         Ok(result)
228     }
229 
230     /// Derives a key from the given high-entropy synthetic password and salt, using HKDF.
derive_key_hkdf(&self, salt: &[u8], out_len: usize) -> Result<ZVec, Error>231     pub fn derive_key_hkdf(&self, salt: &[u8], out_len: usize) -> Result<ZVec, Error> {
232         let prk = hkdf_extract(self.get_key(), salt)?;
233         let info = [];
234         hkdf_expand(out_len, &prk, &info)
235     }
236 
237     /// Try to make another Password object with the same data.
try_clone(&self) -> Result<Password<'static>, Error>238     pub fn try_clone(&self) -> Result<Password<'static>, Error> {
239         Ok(Password::Owned(ZVec::try_from(self.get_key())?))
240     }
241 }
242 
243 /// Calls the boringssl HKDF_extract function.
hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error>244 pub fn hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error> {
245     let max_size: usize = EVP_MAX_MD_SIZE.try_into().unwrap();
246     let mut buf = ZVec::new(max_size)?;
247     let mut out_len = 0;
248     // Safety: HKDF_extract writes at most EVP_MAX_MD_SIZE bytes.
249     // Secret and salt point to valid buffers.
250     let result = unsafe {
251         HKDFExtract(
252             buf.as_mut_ptr(),
253             &mut out_len,
254             secret.as_ptr(),
255             secret.len(),
256             salt.as_ptr(),
257             salt.len(),
258         )
259     };
260     if !result {
261         return Err(Error::HKDFExtractFailed);
262     }
263     // According to the boringssl API, this should never happen.
264     if out_len > max_size {
265         return Err(Error::HKDFExtractFailed);
266     }
267     // HKDF_extract may write fewer than the maximum number of bytes, so we
268     // truncate the buffer.
269     buf.reduce_len(out_len);
270     Ok(buf)
271 }
272 
273 /// Calls the boringssl HKDF_expand function.
hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error>274 pub fn hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error> {
275     let mut buf = ZVec::new(out_len)?;
276     // Safety: HKDF_expand writes out_len bytes to the buffer.
277     // prk and info are valid buffers.
278     let result = unsafe {
279         HKDFExpand(buf.as_mut_ptr(), out_len, prk.as_ptr(), prk.len(), info.as_ptr(), info.len())
280     };
281     if !result {
282         return Err(Error::HKDFExpandFailed);
283     }
284     Ok(buf)
285 }
286 
287 /// A wrapper around the boringssl EC_KEY type that frees it on drop.
288 pub struct ECKey(*mut EC_KEY);
289 
290 impl Drop for ECKey {
drop(&mut self)291     fn drop(&mut self) {
292         // Safety: We only create ECKey objects for valid EC_KEYs
293         // and they are the sole owners of those keys.
294         unsafe { EC_KEY_free(self.0) };
295     }
296 }
297 
298 // Wrappers around the boringssl EC_POINT type.
299 // The EC_POINT can either be owned (and therefore mutable) or a pointer to an
300 // EC_POINT owned by someone else (and thus immutable).  The former are freed
301 // on drop.
302 
303 /// An owned EC_POINT object.
304 pub struct OwnedECPoint(*mut EC_POINT);
305 
306 /// A pointer to an EC_POINT object.
307 pub struct BorrowedECPoint<'a> {
308     data: *const EC_POINT,
309     phantom: PhantomData<&'a EC_POINT>,
310 }
311 
312 impl OwnedECPoint {
313     /// Get the wrapped EC_POINT object.
get_point(&self) -> &EC_POINT314     pub fn get_point(&self) -> &EC_POINT {
315         // Safety: We only create OwnedECPoint objects for valid EC_POINTs.
316         unsafe { self.0.as_ref().unwrap() }
317     }
318 }
319 
320 impl<'a> BorrowedECPoint<'a> {
321     /// Get the wrapped EC_POINT object.
get_point(&self) -> &EC_POINT322     pub fn get_point(&self) -> &EC_POINT {
323         // Safety: We only create BorrowedECPoint objects for valid EC_POINTs.
324         unsafe { self.data.as_ref().unwrap() }
325     }
326 }
327 
328 impl Drop for OwnedECPoint {
drop(&mut self)329     fn drop(&mut self) {
330         // Safety: We only create OwnedECPoint objects for valid
331         // EC_POINTs and they are the sole owners of those points.
332         unsafe { EC_POINT_free(self.0) };
333     }
334 }
335 
336 /// Calls the boringssl ECDH_compute_key function.
ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error>337 pub fn ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error> {
338     let mut buf = ZVec::new(EC_MAX_BYTES)?;
339     let result =
340     // Safety: Our ECDHComputeKey wrapper passes EC_MAX_BYES to ECDH_compute_key, which
341     // writes at most that many bytes to the output.
342     // The two keys are valid objects.
343         unsafe { ECDHComputeKey(buf.as_mut_ptr() as *mut std::ffi::c_void, pub_key, priv_key.0) };
344     if result == -1 {
345         return Err(Error::ECDHComputeKeyFailed);
346     }
347     let out_len = result.try_into().unwrap();
348     // According to the boringssl API, this should never happen.
349     if out_len > buf.len() {
350         return Err(Error::ECDHComputeKeyFailed);
351     }
352     // ECDH_compute_key may write fewer than the maximum number of bytes, so we
353     // truncate the buffer.
354     buf.reduce_len(out_len);
355     Ok(buf)
356 }
357 
358 /// Calls the boringssl EC_KEY_generate_key function.
ec_key_generate_key() -> Result<ECKey, Error>359 pub fn ec_key_generate_key() -> Result<ECKey, Error> {
360     // Safety: Creates a new key on its own.
361     let key = unsafe { ECKEYGenerateKey() };
362     if key.is_null() {
363         return Err(Error::ECKEYGenerateKeyFailed);
364     }
365     Ok(ECKey(key))
366 }
367 
368 /// Calls the boringssl EC_KEY_marshal_private_key function.
ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error>369 pub fn ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error> {
370     let len = 73; // Empirically observed length of private key
371     let mut buf = ZVec::new(len)?;
372     // Safety: the key is valid.
373     // This will not write past the specified length of the buffer; if the
374     // len above is too short, it returns 0.
375     let written_len = unsafe { ECKEYMarshalPrivateKey(key.0, buf.as_mut_ptr(), buf.len()) };
376     if written_len == len {
377         Ok(buf)
378     } else {
379         Err(Error::ECKEYMarshalPrivateKeyFailed)
380     }
381 }
382 
383 /// Calls the boringssl EC_KEY_parse_private_key function.
ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error>384 pub fn ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error> {
385     // Safety: this will not read past the specified length of the buffer.
386     // It fails if less than the whole buffer is consumed.
387     let key = unsafe { ECKEYParsePrivateKey(buf.as_ptr(), buf.len()) };
388     if key.is_null() {
389         Err(Error::ECKEYParsePrivateKeyFailed)
390     } else {
391         Ok(ECKey(key))
392     }
393 }
394 
395 /// Calls the boringssl EC_KEY_get0_public_key function.
ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint396 pub fn ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint {
397     // Safety: The key is valid.
398     // This returns a pointer to a key, so we create an immutable variant.
399     BorrowedECPoint { data: unsafe { EC_KEY_get0_public_key(key.0) }, phantom: PhantomData }
400 }
401 
402 /// Calls the boringssl EC_POINT_point2oct.
ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error>403 pub fn ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error> {
404     // We fix the length to 133 (1 + 2 * field_elem_size), as we get an error if it's too small.
405     let len = 133;
406     let mut buf = vec![0; len];
407     // Safety: EC_POINT_point2oct writes at most len bytes. The point is valid.
408     let result = unsafe { ECPOINTPoint2Oct(point, buf.as_mut_ptr(), len) };
409     if result == 0 {
410         return Err(Error::ECPoint2OctFailed);
411     }
412     // According to the boringssl API, this should never happen.
413     if result > len {
414         return Err(Error::ECPoint2OctFailed);
415     }
416     buf.resize(result, 0);
417     Ok(buf)
418 }
419 
420 /// Calls the boringssl EC_POINT_oct2point function.
ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error>421 pub fn ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error> {
422     // Safety: The buffer is valid.
423     let result = unsafe { ECPOINTOct2Point(buf.as_ptr(), buf.len()) };
424     if result.is_null() {
425         return Err(Error::ECPoint2OctFailed);
426     }
427     // Our C wrapper creates a new EC_POINT, so we mark this mutable and free
428     // it on drop.
429     Ok(OwnedECPoint(result))
430 }
431 
432 /// Uses BoringSSL to extract the DER-encoded subject from a DER-encoded X.509 certificate.
parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error>433 pub fn parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error> {
434     // Try with a 200-byte output buffer, should be enough in all but bizarre cases.
435     let mut retval = vec![0; 200];
436 
437     // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf and
438     // writes at most retval.len() bytes to retval.
439     let mut size = unsafe {
440         extractSubjectFromCertificate(
441             cert_buf.as_ptr(),
442             cert_buf.len(),
443             retval.as_mut_ptr(),
444             retval.len(),
445         )
446     };
447 
448     if size == 0 {
449         return Err(Error::ExtractSubjectFailed);
450     }
451 
452     if size < 0 {
453         // Our buffer wasn't big enough.  Make one that is just the right size and try again.
454         let negated_size = usize::try_from(-size).map_err(|_e| Error::ExtractSubjectFailed)?;
455         retval = vec![0; negated_size];
456 
457         // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf
458         // and writes at most retval.len() bytes to retval.
459         size = unsafe {
460             extractSubjectFromCertificate(
461                 cert_buf.as_ptr(),
462                 cert_buf.len(),
463                 retval.as_mut_ptr(),
464                 retval.len(),
465             )
466         };
467 
468         if size <= 0 {
469             return Err(Error::ExtractSubjectFailed);
470         }
471     }
472 
473     // Reduce buffer size to the amount written.
474     let safe_size = usize::try_from(size).map_err(|_e| Error::ExtractSubjectFailed)?;
475     retval.truncate(safe_size);
476 
477     Ok(retval)
478 }
479 
480 #[cfg(test)]
481 mod tests {
482 
483     use super::*;
484     use keystore2_crypto_bindgen::{AES_gcm_decrypt, AES_gcm_encrypt, CreateKeyId, PBKDF2};
485 
486     #[test]
test_wrapper_roundtrip()487     fn test_wrapper_roundtrip() {
488         let key = generate_aes256_key().unwrap();
489         let message = b"totally awesome message";
490         let (cipher_text, iv, tag) = aes_gcm_encrypt(message, &key).unwrap();
491         let message2 = aes_gcm_decrypt(&cipher_text, &iv, &tag, &key).unwrap();
492         assert_eq!(message[..], message2[..])
493     }
494 
495     #[test]
test_encrypt_decrypt()496     fn test_encrypt_decrypt() {
497         let input = vec![0; 16];
498         let mut out = vec![0; 16];
499         let mut out2 = vec![0; 16];
500         let key = [0; 16];
501         let iv = [0; 12];
502         let mut tag = vec![0; 16];
503         // SAFETY: The various pointers are obtained from references so they are valid, and
504         // `AES_gcm_encrypt` and `AES_gcm_decrypt` don't do anything with them after they return.
505         unsafe {
506             let res = AES_gcm_encrypt(
507                 input.as_ptr(),
508                 out.as_mut_ptr(),
509                 16,
510                 key.as_ptr(),
511                 16,
512                 iv.as_ptr(),
513                 tag.as_mut_ptr(),
514             );
515             assert!(res);
516             assert_ne!(out, input);
517             assert_ne!(tag, input);
518             let res = AES_gcm_decrypt(
519                 out.as_ptr(),
520                 out2.as_mut_ptr(),
521                 16,
522                 key.as_ptr(),
523                 16,
524                 iv.as_ptr(),
525                 tag.as_ptr(),
526             );
527             assert!(res);
528             assert_eq!(out2, input);
529         }
530     }
531 
532     #[test]
test_create_key_id()533     fn test_create_key_id() {
534         let blob = [0; 16];
535         let mut out: u64 = 0;
536         // SAFETY: The pointers are obtained from references so they are valid, the length matches
537         // the length of the array, and `CreateKeyId` doesn't access them after it returns.
538         unsafe {
539             let res = CreateKeyId(blob.as_ptr(), blob.len(), &mut out);
540             assert!(res);
541             assert_ne!(out, 0);
542         }
543     }
544 
545     #[test]
test_pbkdf2()546     fn test_pbkdf2() {
547         let mut key = vec![0; 16];
548         let pw = [0; 16];
549         let salt = [0; 16];
550         // SAFETY: The pointers are obtained from references so they are valid, the salt is the
551         // expected length, the other lengths match the lengths of the arrays, and `PBKDF2` doesn't
552         // access them after it returns.
553         unsafe {
554             PBKDF2(key.as_mut_ptr(), key.len(), pw.as_ptr(), pw.len(), salt.as_ptr());
555         }
556         assert_ne!(key, vec![0; 16]);
557     }
558 
559     #[test]
test_hkdf()560     fn test_hkdf() {
561         let result = hkdf_extract(&[0; 16], &[0; 16]);
562         assert!(result.is_ok());
563         for out_len in 4..=8 {
564             let result = hkdf_expand(out_len, &[0; 16], &[0; 16]);
565             assert!(result.is_ok());
566             assert_eq!(result.unwrap().len(), out_len);
567         }
568     }
569 
570     #[test]
test_ec() -> Result<(), Error>571     fn test_ec() -> Result<(), Error> {
572         let priv0 = ec_key_generate_key()?;
573         assert!(!priv0.0.is_null());
574         let pub0 = ec_key_get0_public_key(&priv0);
575 
576         let priv1 = ec_key_generate_key()?;
577         let pub1 = ec_key_get0_public_key(&priv1);
578 
579         let priv0s = ec_key_marshal_private_key(&priv0)?;
580         let pub0s = ec_point_point_to_oct(pub0.get_point())?;
581         let pub1s = ec_point_point_to_oct(pub1.get_point())?;
582 
583         let priv0 = ec_key_parse_private_key(&priv0s)?;
584         let pub0 = ec_point_oct_to_point(&pub0s)?;
585         let pub1 = ec_point_oct_to_point(&pub1s)?;
586 
587         let left_key = ecdh_compute_key(pub0.get_point(), &priv1)?;
588         let right_key = ecdh_compute_key(pub1.get_point(), &priv0)?;
589 
590         assert_eq!(left_key, right_key);
591         Ok(())
592     }
593 
594     #[test]
test_hmac_sha256()595     fn test_hmac_sha256() {
596         let key = b"This is the key";
597         let msg1 = b"This is a message";
598         let msg2 = b"This is another message";
599         let tag1a = hmac_sha256(key, msg1).unwrap();
600         assert_eq!(tag1a.len(), HMAC_SHA256_LEN);
601         let tag1b = hmac_sha256(key, msg1).unwrap();
602         assert_eq!(tag1a, tag1b);
603         let tag2 = hmac_sha256(key, msg2).unwrap();
604         assert_eq!(tag2.len(), HMAC_SHA256_LEN);
605         assert_ne!(tag1a, tag2);
606     }
607 }
608