1 /* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 package com.android.tradefed.util; 17 18 import java.util.ArrayList; 19 import java.util.HashMap; 20 import java.util.List; 21 import java.util.Map; 22 import java.util.Stack; 23 24 /** 25 * A directed unweighted graphs implementation. The vertex type can be specified. 26 */ 27 public class DirectedGraph<V> { 28 29 /** 30 * The implementation here is basically an adjacency list, but instead 31 * of an array of lists, a Map is used to map each vertex to its list of 32 * adjacent vertices. 33 */ 34 private Map<V,List<V>> neighbors = new HashMap<V, List<V>>(); 35 36 /** 37 * String representation of graph. 38 */ 39 @Override toString()40 public String toString() { 41 StringBuffer s = new StringBuffer(); 42 for (V v : neighbors.keySet()) { 43 s.append("\n " + v + " -> " + neighbors.get(v)); 44 } 45 return s.toString(); 46 } 47 48 /** 49 * Add a vertex to the graph. Inop if vertex is already in graph. 50 */ addVertice(V vertex)51 public void addVertice(V vertex) { 52 if (neighbors.containsKey(vertex)) { 53 return; 54 } 55 neighbors.put(vertex, new ArrayList<V>()); 56 } 57 58 /** 59 * True if graph contains vertex. False otherwise. 60 */ contains(V vertex)61 public boolean contains(V vertex) { 62 return neighbors.containsKey(vertex); 63 } 64 65 /** 66 * Add an edge to the graph; if either vertex does not exist, it's added. 67 * This implementation allows the creation of multi-edges and self-loops. 68 */ addEdge(V from, V to)69 public void addEdge(V from, V to) { 70 this.addVertice(from); 71 this.addVertice(to); 72 neighbors.get(from).add(to); 73 } 74 75 /** 76 * Remove an edge from the graph. 77 * 78 * @throws IllegalArgumentException if either vertex doesn't exist. 79 */ removeEdge(V from, V to)80 public void removeEdge(V from, V to) { 81 if (!(this.contains(from) && this.contains(to))) { 82 throw new IllegalArgumentException("Nonexistent vertex"); 83 } 84 neighbors.get(from).remove(to); 85 } 86 87 /** 88 * Return a map representation the in-degree of each vertex. 89 */ inDegree()90 private Map<V, Integer> inDegree() { 91 Map<V, Integer> result = new HashMap<V, Integer>(); 92 // All initial in-degrees are 0 93 for (V v: neighbors.keySet()) { 94 result.put(v, 0); 95 } 96 // Iterate over an count the in-degree 97 for (V from: neighbors.keySet()) { 98 for (V to: neighbors.get(from)) { 99 result.put(to, result.get(to) + 1); 100 } 101 } 102 return result; 103 } 104 105 /** 106 * Return a List of the topological sort of the vertices; null for no such sort. 107 */ topSort()108 private List<V> topSort() { 109 Map<V, Integer> degree = inDegree(); 110 // Determine all vertices with zero in-degree 111 Stack<V> zeroVerts = new Stack<V>(); 112 for (V v: degree.keySet()) { 113 if (degree.get(v) == 0) { 114 zeroVerts.push(v); 115 } 116 } 117 // Determine the topological order 118 List<V> result = new ArrayList<V>(); 119 while (!zeroVerts.isEmpty()) { 120 // Choose a vertex with zero in-degree 121 V v = zeroVerts.pop(); 122 // Vertex v is next in topol order 123 result.add(v); 124 // "Remove" vertex v by updating its neighbors 125 for (V neighbor: neighbors.get(v)) { 126 degree.put(neighbor, degree.get(neighbor) - 1); 127 // Remember any vertices that now have zero in-degree 128 if (degree.get(neighbor) == 0) { 129 zeroVerts.push(neighbor); 130 } 131 } 132 } 133 // Check that we have used the entire graph (if not, there was a cycle) 134 if (result.size() != neighbors.size()) { 135 return null; 136 } 137 return result; 138 } 139 140 /** 141 * True if graph is a dag (directed acyclic graph). 142 */ isDag()143 public boolean isDag() { 144 return topSort() != null; 145 } 146 } 147