1 /*
2  * Copyright 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // Don't lint the next line, as cpplint will suggest adding
18 // /tools/security as an include_dir
19 // NOLINTNEXTLINE
20 #include "fuzz_ffi.h"
21 
22 #include <vector>
23 #include "include/ffi_common.h"
24 
25 // Empty functions we can use for our function targets
fn(int num_args,...)26 void fn(int num_args, ...) {}
closure_fn(ffi_cif * cif __UNUSED__,void * resp,void ** args,void * userdata)27 void closure_fn(ffi_cif* cif __UNUSED__,
28         void* resp, void** args, void* userdata) {}
raw_closure_fn(ffi_cif * cif __UNUSED__,void * resp,ffi_raw * args,void * userdata)29 void raw_closure_fn(ffi_cif* cif __UNUSED__,
30         void* resp, ffi_raw* args, void* userdata) {}
java_raw_closure_fn(ffi_cif * cif __UNUSED__,void * resp,ffi_java_raw * args,void * userdata)31 void java_raw_closure_fn(ffi_cif* cif __UNUSED__,
32         void* resp, ffi_java_raw* args, void* userdata) {}
33 
generateCustomType(FuzzedDataProvider * dataProvider)34 ffi_type* generateCustomType(FuzzedDataProvider* dataProvider) {
35     // Set our flag so we don't call a java-related function (triggers an abort)
36     args_contain_struct = true;
37 
38     ffi_type* new_type = reinterpret_cast<ffi_type*>(malloc(sizeof(ffi_type)));
39     ffi_alloc_vector.push_back(new_type);
40 
41     new_type->size = 0;
42     new_type->alignment = 0;
43     new_type->type = FFI_TYPE_STRUCT;
44 
45     // Generate our subobjects
46     size_t num_elements = dataProvider->ConsumeIntegralInRange<size_t>(0,
47             MAX_NUM_ELEMENTS);
48     new_type->elements = reinterpret_cast<ffi_type**>(
49             malloc(sizeof(ffi_type*)*(num_elements+1)));
50 
51     // Nested custom structs will cause an assert, so disable them
52     // TODO(michael.ensing@leviathansecurity.com):
53     //     change the 'false' here to true once libffi supports nested structs.
54     //     It'll just throw an assert currently.
55     for (size_t i=0; i < num_elements; i++) {
56         new_type->elements[i] = getRandomType(dataProvider, false);
57     }
58 
59     // The final element must be a nullptr
60     new_type->elements[num_elements] = NULL;
61 
62     // Get our size/alignment
63     ffi_get_struct_offsets(abi, new_type, NULL);
64 
65     return new_type;
66 }
67 
getTotalSize(ffi_type * type)68 size_t getTotalSize(ffi_type* type) {
69     if (type == NULL) {
70         return 0;
71     }
72 
73     // Start the total as the size of the object itself
74     size_t total_size = type->size > sizeof(void*) ?
75             type->size : sizeof(void*);
76 
77     // Recursively add the size of the subelements
78     if (type->elements != NULL) {
79         for (size_t i=0; type->elements[i] != NULL; i++) {
80             total_size += getTotalSize(type->elements[i]);
81         }
82     }
83 
84     return total_size;
85 }
86 
getRandomType(FuzzedDataProvider * dataProvider,bool allowCustomTypes)87 ffi_type* getRandomType(FuzzedDataProvider* dataProvider,
88         bool allowCustomTypes) {
89     // Which type? Let type==NUM_TYPES be our custom struct case
90     size_t type_index = dataProvider->ConsumeIntegralInRange<size_t>(0,
91             NUM_TYPES);
92     ffi_type* type;
93     if (type_index == NUM_TYPES) {
94         if (allowCustomTypes) {
95             type = generateCustomType(dataProvider);
96         } else {
97             return NULL;
98         }
99     } else {
100         type = ffi_types[type_index];
101     }
102 
103     return type;
104 }
105 
genArg(ffi_type * type,FuzzedDataProvider * dataProvider)106 void* genArg(ffi_type* type, FuzzedDataProvider* dataProvider) {
107     // Allocate the space for our arg
108     // TODO(michael.ensing@leviathansecurity.com):
109     //    Properly allocate the correct amount of aligned-space,
110     //    don't just double (which should contain any alignment)
111     size_t type_size = getTotalSize(type)*2;
112 
113     if (type_size == 0) {
114         return NULL;
115     }
116 
117     void* ret = malloc(type_size);
118 
119     std::vector<uint8_t> bytes = dataProvider->ConsumeBytes<uint8_t>(type_size);
120     memcpy(ret, bytes.data(), bytes.size());
121 
122     return ret;
123 }
124 
buildArgArrays(ffi_type * arg_types[],void * arg_array[],size_t num_args,FuzzedDataProvider * dataProvider)125 bool buildArgArrays(ffi_type* arg_types[], void* arg_array[], size_t num_args,
126         FuzzedDataProvider* dataProvider) {
127     // The first value in our array should be the number of arguments
128     arg_types[0] = &ffi_type_sint;
129     size_t* size_ptr = reinterpret_cast<size_t*>(malloc(sizeof(size_t)));
130     *size_ptr = num_args;
131     arg_array[0] = size_ptr;
132 
133     // Grab our arguments
134     for (size_t i = 1; i <= num_args; i++) {
135         // Determine what type we're using
136         ffi_type* type = getRandomType(dataProvider, true);
137         if (type == NULL) {
138             return false;
139         }
140         arg_types[i] = type;
141 
142         // Generate a value for it and add to our arguments array
143         arg_array[i] = genArg(type, dataProvider);
144     }
145 
146     // Our arrays of pointers need to be nullptr-terminated
147     arg_types[num_args+1] = NULL;
148     arg_array[num_args+1] = NULL;
149 
150     return true;
151 }
152 
runMainFunctions(ffi_cif * cif,void * resp_buf,void ** arg_array,FuzzedDataProvider * dataProvider)153 void runMainFunctions(ffi_cif* cif, void* resp_buf, void** arg_array,
154         FuzzedDataProvider* dataProvider) {
155     // Call function
156     ffi_call(cif, FFI_FN(fn), resp_buf, arg_array);
157 
158     // Prep Closure
159     ffi_closure* pcl = NULL;
160     void* code;
161 
162     pcl = reinterpret_cast<ffi_closure*>(
163             ffi_closure_alloc(sizeof(ffi_closure), &code));
164     if (pcl == NULL) {
165         return;
166     }
167 
168     size_t buf_size = dataProvider->ConsumeIntegralInRange<size_t>(0,
169             MAX_RESP_SIZE);
170     std::vector<uint8_t> data_vector =
171             dataProvider->ConsumeBytes<uint8_t>(buf_size);
172     ffi_prep_closure_loc(pcl, cif, closure_fn, data_vector.data(), code);
173     ffi_closure_free(pcl);
174 }
175 
runRawFunctions(ffi_cif * cif,void * resp_buf,void ** arg_array,FuzzedDataProvider * dataProvider)176 void runRawFunctions(ffi_cif* cif, void* resp_buf, void** arg_array,
177         FuzzedDataProvider* dataProvider) {
178     #if !FFI_NO_RAW_API && !FFI_NATIVE_RAW_API
179     // Allocate our ffi_raw and put our args there
180     size_t rsize = ffi_raw_size(cif);
181     ffi_raw* raw_args = reinterpret_cast<ffi_raw*>(malloc(rsize));
182     raw_alloc_vector.push_back(raw_args);
183     ffi_ptrarray_to_raw(cif, arg_array, raw_args);
184 
185     // Call
186     ffi_raw_call(cif, FFI_FN(fn), resp_buf, raw_args);
187 
188     // Prep Closure
189     #if FFI_CLOSURES
190     ffi_raw_closure* pcl = NULL;
191     void* code;
192 
193     pcl = static_cast<ffi_raw_closure*>(
194             ffi_closure_alloc(sizeof(ffi_raw_closure), &code));
195     if (pcl == NULL) {
196         return;
197     }
198     size_t buf_size = dataProvider->ConsumeIntegralInRange<size_t>(0,
199             MAX_RESP_SIZE);
200     std::vector<uint8_t> data_vector =
201             dataProvider->ConsumeBytes<uint8_t>(buf_size);
202     ffi_prep_raw_closure_loc(pcl, cif, raw_closure_fn, data_vector.data(),
203                              code);
204     ffi_closure_free(pcl);
205 
206     #endif  // FFI_CLOSURES
207     #endif  // !FFI_NO_RAW_API && !FFI_NATIVE_RAW_API
208 }
209 
runJavaFunctions(ffi_cif * cif,void * resp_buf,void ** arg_array,FuzzedDataProvider * dataProvider)210 void runJavaFunctions(ffi_cif* cif, void* resp_buf, void** arg_array,
211         FuzzedDataProvider* dataProvider) {
212     #if !defined(NO_JAVA_RAW_API)
213     #if  !FFI_NO_RAW_API && !FFI_NATIVE_RAW_API
214 
215     // Allocate our ffi_java_raw and put our args there
216     size_t rsize = ffi_java_raw_size(cif);
217     // NOTE: a buffer overread will occasionally happen if we don't
218     //       increase rsize.
219     ffi_java_raw* raw_args = reinterpret_cast<ffi_raw*>(malloc(rsize*2));
220     raw_alloc_vector.push_back(raw_args);
221     ffi_ptrarray_to_raw(cif, arg_array, raw_args);
222 
223     // Call
224     ffi_java_raw_call(cif, FFI_FN(fn), resp_buf, raw_args);
225 
226     // Prep Closure
227     #if FFI_CLOSURES
228     ffi_java_raw_closure* pcl = NULL;
229     void* code;
230 
231     pcl = static_cast<ffi_java_raw_closure*>(
232             ffi_closure_alloc(sizeof(ffi_java_raw_closure), &code));
233     if (pcl == NULL) {
234         return;
235     }
236     size_t buf_size = dataProvider->ConsumeIntegralInRange<size_t>(0,
237             MAX_RESP_SIZE);
238     std::vector<uint8_t> data_vector =
239             dataProvider->ConsumeBytes<uint8_t>(buf_size);
240     ffi_prep_java_raw_closure_loc(pcl, cif, raw_closure_fn, data_vector.data(),
241                                   code);
242 
243     ffi_closure_free(pcl);
244 
245 
246     #endif  // FFI_CLOSURES
247     #endif  // !FFI_NATIVE_RAW_API
248     #endif  // !NO_JAVA_RAW_API
249 }
250 
freeFFI(ffi_type * ffi_type)251 void freeFFI(ffi_type* ffi_type) {
252     // Make sure it's one of our structs
253     if (ffi_type == NULL || ffi_type->type != FFI_TYPE_STRUCT) {
254         return;
255     }
256 
257     if (ffi_type->elements != NULL) {
258         free(ffi_type->elements);
259     }
260 
261     // Finally, free our object
262     free(ffi_type);
263 }
264 
freeAll(void * arg_array[],size_t num_args,void * resp_buf)265 void freeAll(void* arg_array[], size_t num_args, void* resp_buf) {
266     // Free our custom struct objects
267     for (const auto& ffi : ffi_alloc_vector) {
268         freeFFI(ffi);
269     }
270     ffi_alloc_vector.clear();
271     for (const auto& raw : raw_alloc_vector) {
272         free(raw);
273     }
274     raw_alloc_vector.clear();
275 
276     for (size_t i=0; i <= num_args; i++) {
277         free(arg_array[i]);
278     }
279 
280     if (resp_buf) {
281         free(resp_buf);
282     }
283 }
284 
LLVMFuzzerTestOneInput(const uint8_t * Data,size_t Size)285 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
286     // Init our wrapper
287     FuzzedDataProvider dataProvider(Data, Size);
288     ffi_cif cif;
289     ffi_status ret;
290     void* resp_buf = NULL;
291     args_contain_struct = false;
292     ffi_type* rtype;
293 
294     // How many args are we sending?
295     size_t num_args = dataProvider.ConsumeIntegralInRange<size_t>(0,
296             MAX_NUM_ARGS);
297 
298     // Build our array of args (+2 for leading arg_count and trailing nullptr)
299     ffi_type* arg_types[num_args+2];
300     void* arg_array[num_args+2];
301     bool success = buildArgArrays(arg_types, arg_array, num_args,
302             &dataProvider);
303     if (!success) {
304         goto free;
305     }
306 
307     // Get return type
308     rtype = dataProvider.PickValueInArray<ffi_type*, NUM_TYPES>(ffi_types);
309 
310     // Create a buffer for our return value
311     resp_buf = malloc(MAX_RESP_SIZE);
312     if (resp_buf == NULL) {
313         goto free;
314     }
315 
316     // Set up our ABI
317     // NOTE: fuzzing abi triggers an abort on linux-x86_64,
318     //       so only fuzz it on ARM
319     #if MAX_ABI > 0 && defined(ARM)
320     abi = static_cast<ffi_abi>(
321            dataProvider.ConsumeIntegralInRange<uint32_t>(0, MAX_ABI));
322     #endif
323     #if HAVE_LONG_DOUBLE_VARIANT
324     ffi_prep_types(abi);
325     #endif
326 
327     // ============= Call Functions =============
328     ret = ffi_prep_cif_var(&cif, abi, 1, num_args, rtype,
329             arg_types);
330     if (ret != FFI_OK) {
331         goto free;
332     }
333 
334     runMainFunctions(&cif, resp_buf, arg_array, &dataProvider);
335     runRawFunctions(&cif, resp_buf, arg_array, &dataProvider);
336     if (!args_contain_struct) {
337         runJavaFunctions(&cif, resp_buf, arg_array, &dataProvider);
338     }
339 
340 free:
341     freeAll(arg_array, num_args, resp_buf);
342     return 0;
343 }
344