• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2022 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #pragma once
18 
19 #include <cstddef>
20 #include <functional>
21 #include <type_traits>
22 #include <utility>
23 
24 #include <ftl/details/function.h>
25 
26 namespace android::ftl {
27 
28 // ftl::Function<F, N> is a container for function object, and can mostly be used in place of
29 // std::function<F>.
30 //
31 // Unlike std::function<F>, a ftl::Function<F, N>:
32 //
33 //  * Uses a static amount of memory (controlled by N), and never any dynamic allocation.
34 //  * Satisfies the std::is_trivially_copyable<> trait.
35 //  * Satisfies the std::is_trivially_destructible<> trait.
36 //
37 // However those same limits are also required from the contained function object in turn.
38 //
39 // The size of a ftl::Function<F, N> is guaranteed to be:
40 //
41 //     sizeof(std::intptr_t) * (N + 2)
42 //
43 // A ftl::Function<F, N> can always be implicitly converted to a larger size ftl::Function<F, M>.
44 // Trying to convert the other way leads to a compilation error.
45 //
46 // A default-constructed ftl::Function is in an empty state. The operator bool() overload returns
47 // false in this state. It is undefined behavior to attempt to invoke the function in this state.
48 //
49 // The ftl::Function<F, N> can also be constructed or assigned from ftl::no_op. This sets up the
50 // ftl::Function to be non-empty, with a function that when called does nothing except
51 // default-constructs a return value.
52 //
53 // The ftl::make_function() helpers construct a ftl::Function<F, N>, including deducing the
54 // values of F and N from the arguments it is given.
55 //
56 // The static ftl::Function<F, N>::make() helpers construct a ftl::Function<F, N> without that
57 // deduction, and also allow for implicit argument conversion if the target being called needs them.
58 //
59 // The construction helpers allow any of the following types of functions to be stored:
60 //
61 //  * Any SMALL function object (as defined by the C++ Standard), such as a lambda with a small
62 //    capture, or other "functor". The requirements are:
63 //
64 //      1) The function object must be trivial to destroy (in fact, the destructor will never
65 //         actually be called once copied to the internal storage).
66 //      2) The function object must be trivial to copy (the raw bytes will be copied as the
67 //         ftl::Function<F, N> is copied/moved).
68 //      3) The size of the function object cannot be larger than sizeof(std::intptr_t) * (N + 1),
69 //         and it cannot require stricter alignment than alignof(std::intptr_t).
70 //
71 //    With the default of N=0, a lambda can only capture a single pointer-sized argument. This is
72 //    enough to capture `this`, which is why N=0 is the default.
73 //
74 //  * A member function, with the address passed as the template value argument to the construction
75 //    helper function, along with the instance pointer needed to invoke it passed as an ordinary
76 //    argument.
77 //
78 //        ftl::make_function<&Class::member_function>(this);
79 //
80 //    Note that the indicated member function will be invoked non-virtually. If you need it to be
81 //    invoked virtually, you should invoke it yourself with a small lambda like so:
82 //
83 //        ftl::function([this] { virtual_member_function(); });
84 //
85 //  * An ordinary function ("free function"), with the address of the function passed as a template
86 //    value argument.
87 //
88 //        ftl::make_function<&std::atoi>();
89 //
90 //   As with the member function helper, as the function is known at compile time, it will be called
91 //   directly.
92 //
93 // Example usage:
94 //
95 //   class MyClass {
96 //    public:
97 //     void on_event() const {}
98 //     int on_string(int*, std::string_view) { return 1; }
99 //
100 //     auto get_function() {
101 //       return ftl::function([this] { on_event(); });
102 //     }
103 //   } cls;
104 //
105 //   // A function container with no arguments, and returning no value.
106 //   ftl::Function<void()> f;
107 //
108 //   // Construct a ftl::Function containing a small lambda.
109 //   f = cls.get_function();
110 //
111 //   // Construct a ftl::Function that calls `cls.on_event()`.
112 //   f = ftl::function<&MyClass::on_event>(&cls);
113 //
114 //   // Create a do-nothing function.
115 //   f = ftl::no_op;
116 //
117 //   // Invoke the contained function.
118 //   f();
119 //
120 //   // Also invokes it.
121 //   std::invoke(f);
122 //
123 //   // Create a typedef to give a more meaningful name and bound the size.
124 //   using MyFunction = ftl::Function<int(std::string_view), 2>;
125 //   int* ptr = nullptr;
126 //   auto f1 = MyFunction::make(
127 //       [cls = &cls, ptr](std::string_view sv) {
128 //           return cls->on_string(ptr, sv);
129 //       });
130 //   int r = f1("abc"sv);
131 //
132 //   // Returns a default-constructed int (0).
133 //   f1 = ftl::no_op;
134 //   r = f1("abc"sv);
135 //   assert(r == 0);
136 
137 template <typename F, std::size_t N = 0>
138 class Function;
139 
140 // Used to construct a Function that does nothing.
141 struct NoOpTag {};
142 
143 constexpr NoOpTag no_op;
144 
145 // Detects that a type is a `ftl::Function<F, N>` regardless of what `F` and `N` are.
146 template <typename>
147 struct is_function : public std::false_type {};
148 
149 template <typename F, std::size_t N>
150 struct is_function<Function<F, N>> : public std::true_type {};
151 
152 template <typename T>
153 constexpr bool is_function_v = is_function<T>::value;
154 
155 template <typename Ret, typename... Args, std::size_t N>
156 class Function<Ret(Args...), N> final {
157   // Enforce a valid size, with an arbitrary maximum allowed size for the container of
158   // sizeof(std::intptr_t) * 16, though that maximum can be relaxed.
159   static_assert(N <= details::kFunctionMaximumN);
160 
161   using OpaqueStorageTraits = details::function_opaque_storage<N>;
162 
163  public:
164   // Defining result_type allows ftl::Function to be substituted for std::function.
165   using result_type = Ret;
166 
167   // Constructs an empty ftl::Function.
168   Function() = default;
169 
170   // Constructing or assigning from nullptr_t also creates an empty ftl::Function.
171   Function(std::nullptr_t) {}
172   Function& operator=(std::nullptr_t) { return *this = Function(nullptr); }
173 
174   // Constructing from NoOpTag sets up a a special no-op function which is valid to call, and which
175   // returns a default constructed return value.
176   Function(NoOpTag) : function_(details::bind_opaque_no_op<Ret, Args...>()) {}
177   Function& operator=(NoOpTag) { return *this = Function(no_op); }
178 
179   // Constructing/assigning from a function object stores a copy of that function object, however:
180   //  * It must be trivially copyable, as the implementation makes a copy with memcpy().
181   //  * It must be trivially destructible, as the implementation doesn't destroy the copy!
182   //  * It must fit in the limited internal storage, which enforces size/alignment restrictions.
183 
184   template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
185   Function(const F& f)
186       : opaque_(OpaqueStorageTraits::opaque_copy(f)),
187         function_(details::bind_opaque_function_object<F, Ret, Args...>(f)) {}
188 
189   template <typename F, typename = std::enable_if_t<std::is_invocable_r_v<Ret, F, Args...>>>
190   Function& operator=(const F& f) noexcept {
191     return *this = Function{OpaqueStorageTraits::opaque_copy(f),
192                             details::bind_opaque_function_object<F, Ret, Args...>(f)};
193   }
194 
195   // Constructing/assigning from a smaller ftl::Function is allowed, but not anything else.
196 
197   template <std::size_t M>
198   Function(const Function<Ret(Args...), M>& other)
199       : opaque_{OpaqueStorageTraits::opaque_copy(other.opaque_)}, function_(other.function_) {}
200 
201   template <std::size_t M>
202   auto& operator=(const Function<Ret(Args...), M>& other) {
203     return *this = Function{OpaqueStorageTraits::opaque_copy(other.opaque_), other.function_};
204   }
205 
206   // Returns true if a function is set.
207   explicit operator bool() const { return function_ != nullptr; }
208 
209   // Checks if the other function has the same contents as this one.
210   bool operator==(const Function& other) const {
211     return other.opaque_ == opaque_ && other.function_ == function_;
212   }
213   bool operator!=(const Function& other) const { return !operator==(other); }
214 
215   // Alternative way of testing for a function being set.
216   bool operator==(std::nullptr_t) const { return function_ == nullptr; }
217   bool operator!=(std::nullptr_t) const { return function_ != nullptr; }
218 
219   // Invokes the function.
220   Ret operator()(Args... args) const {
221     return std::invoke(function_, opaque_.data(), std::forward<Args>(args)...);
222   }
223 
224   // Creation helper for function objects, such as lambdas.
225   template <typename F>
226   static auto make(const F& f) -> decltype(Function{f}) {
227     return Function{f};
228   }
229 
230   // Creation helper for a class pointer and a compile-time chosen member function to call.
231   template <auto MemberFunction, typename Class>
232   static auto make(Class* instance) -> decltype(Function{
233       details::bind_member_function<MemberFunction>(instance,
234                                                     static_cast<Ret (*)(Args...)>(nullptr))}) {
235     return Function{details::bind_member_function<MemberFunction>(
236         instance, static_cast<Ret (*)(Args...)>(nullptr))};
237   }
238 
239   // Creation helper for a compile-time chosen free function to call.
240   template <auto FreeFunction>
241   static auto make() -> decltype(Function{
242       details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))}) {
243     return Function{
244         details::bind_free_function<FreeFunction>(static_cast<Ret (*)(Args...)>(nullptr))};
245   }
246 
247  private:
248   // Needed so a Function<F, M> can be converted to a Function<F, N>.
249   template <typename, std::size_t>
250   friend class Function;
251 
252   // The function pointer type of function stored in `function_`. The first argument is always
253   // `&opaque_`.
254   using StoredFunction = Ret(void*, Args...);
255 
256   // The type of the opaque storage, used to hold an appropriate function object.
257   // The type stored here is ONLY known to the StoredFunction.
258   // We always use at least one std::intptr_t worth of storage, and always a multiple of that size.
259   using OpaqueStorage = typename OpaqueStorageTraits::type;
260 
261   // Internal constructor for creating from a raw opaque blob + function pointer.
262   Function(const OpaqueStorage& opaque, StoredFunction* function)
263       : opaque_(opaque), function_(function) {}
264 
265   // Note: `mutable` so that `operator() const` can use it.
266   mutable OpaqueStorage opaque_{};
267   StoredFunction* function_{nullptr};
268 };
269 
270 // Makes a ftl::Function given a function object `F`.
271 template <typename F, typename T = details::function_traits<F>>
272 Function(const F&) -> Function<typename T::type, T::size>;
273 
274 template <typename F>
275 auto make_function(const F& f) -> decltype(Function{f}) {
276   return Function{f};
277 }
278 
279 // Makes a ftl::Function given a `MemberFunction` and a instance pointer to the associated `Class`.
280 template <auto MemberFunction, typename Class>
281 auto make_function(Class* instance)
282     -> decltype(Function{details::bind_member_function<MemberFunction>(
283         instance,
284         static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))}) {
285   return Function{details::bind_member_function<MemberFunction>(
286       instance, static_cast<details::remove_member_function_pointer_t<MemberFunction>*>(nullptr))};
287 }
288 
289 // Makes a ftl::Function given an ordinary free function.
290 template <auto FreeFunction>
291 auto make_function() -> decltype(Function{
292     details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))}) {
293   return Function{
294       details::bind_free_function<FreeFunction>(static_cast<decltype(FreeFunction)>(nullptr))};
295 }
296 
297 }  // namespace android::ftl
298