1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ueventd.h"
18 
19 #include <android/api-level.h>
20 #include <ctype.h>
21 #include <dirent.h>
22 #include <fcntl.h>
23 #include <signal.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/stat.h>
28 #include <sys/wait.h>
29 #include <unistd.h>
30 
31 #include <set>
32 #include <thread>
33 
34 #include <android-base/chrono_utils.h>
35 #include <android-base/logging.h>
36 #include <android-base/properties.h>
37 #include <fstab/fstab.h>
38 #include <selinux/android.h>
39 #include <selinux/selinux.h>
40 
41 #include "devices.h"
42 #include "firmware_handler.h"
43 #include "modalias_handler.h"
44 #include "selabel.h"
45 #include "selinux.h"
46 #include "uevent_handler.h"
47 #include "uevent_listener.h"
48 #include "ueventd_parser.h"
49 #include "util.h"
50 
51 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
52 // socket.  When ueventd receives such a message it handles it by taking appropriate actions,
53 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
54 // labels, etc.
55 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
56 // and character devices.
57 
58 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
59 // /sys and writing 'add' to each 'uevent' file that it finds.  This causes the kernel to generate
60 // and resend uevent messages for all of the currently registered devices.  This is done, because
61 // ueventd would not have been running when these devices were registered and therefore was unable
62 // to receive their uevent messages and handle them appropriately.  This process is known as
63 // 'cold boot'.
64 
65 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
66 // its boot process.  For this reason, cold boot should be as quick as possible.  One way to achieve
67 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
68 // time during cold boot.
69 
70 // Handling of uevent messages has two unique properties:
71 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
72 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
73 //    that no file system operations are done while the uevent process has an abnormal egid or
74 //    fscreatecon or this handling must happen in a separate process.
75 // Given the above two properties, it is best to fork() subprocesses to handle the uevents.  This
76 // reduces the overhead and complexity that would be required in a solution with threads and locks.
77 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
78 // there is no reason to deal with the complexity of the former.
79 
80 // One other important caveat during the boot process is the handling of SELinux restorecon.
81 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
82 // device when its uevent is handled, results in multiple restorecon operations being done on a
83 // given file.  It is more efficient to simply do restorecon recursively on /sys during cold boot,
84 // than to do restorecon on each device as its uevent is handled.  This only applies to cold boot;
85 // once that has completed, restorecon is done for each device as its uevent is handled.
86 
87 // With all of the above considered, the cold boot process has the below steps:
88 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
89 //    the generated uevents.  It writes these uevents into a queue represented by a vector.
90 //
91 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
92 //    uevents in the queue based on a starting offset (their process number) and a stride (the total
93 //    number of processes).  Note that no IPC happens at this point and only const functions from
94 //    DeviceHandler should be called from this context.
95 //
96 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
97 //    selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
98 //
99 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
100 //    subprocess handlers to complete and exit.  Once this happens, it marks coldboot as having
101 //    completed.
102 //
103 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
104 
105 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
106 // without issue after the coldboot process completes.  This is because the uevent listener is
107 // paused while the uevent handler and restorecon actions take place.  Once coldboot completes,
108 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
109 // coldboot.
110 
111 namespace android {
112 namespace init {
113 
114 class ColdBoot {
115   public:
ColdBoot(UeventListener & uevent_listener,std::vector<std::unique_ptr<UeventHandler>> & uevent_handlers,bool enable_parallel_restorecon,std::vector<std::string> parallel_restorecon_queue)116     ColdBoot(UeventListener& uevent_listener,
117              std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers,
118              bool enable_parallel_restorecon,
119              std::vector<std::string> parallel_restorecon_queue)
120         : uevent_listener_(uevent_listener),
121           uevent_handlers_(uevent_handlers),
122           num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4),
123           enable_parallel_restorecon_(enable_parallel_restorecon),
124           parallel_restorecon_queue_(parallel_restorecon_queue) {}
125 
126     void Run();
127 
128   private:
129     void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
130     void RegenerateUevents();
131     void ForkSubProcesses();
132     void WaitForSubProcesses();
133     void RestoreConHandler(unsigned int process_num, unsigned int total_processes);
134     void GenerateRestoreCon(const std::string& directory);
135 
136     UeventListener& uevent_listener_;
137     std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers_;
138 
139     unsigned int num_handler_subprocesses_;
140     bool enable_parallel_restorecon_;
141 
142     std::vector<Uevent> uevent_queue_;
143 
144     std::set<pid_t> subprocess_pids_;
145 
146     std::vector<std::string> restorecon_queue_;
147 
148     std::vector<std::string> parallel_restorecon_queue_;
149 };
150 
UeventHandlerMain(unsigned int process_num,unsigned int total_processes)151 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
152     for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
153         auto& uevent = uevent_queue_[i];
154 
155         for (auto& uevent_handler : uevent_handlers_) {
156             uevent_handler->HandleUevent(uevent);
157         }
158     }
159 }
160 
RestoreConHandler(unsigned int process_num,unsigned int total_processes)161 void ColdBoot::RestoreConHandler(unsigned int process_num, unsigned int total_processes) {
162     android::base::Timer t_process;
163 
164     for (unsigned int i = process_num; i < restorecon_queue_.size(); i += total_processes) {
165         android::base::Timer t;
166         auto& dir = restorecon_queue_[i];
167 
168         selinux_android_restorecon(dir.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE);
169 
170         //Mark a dir restorecon operation for 50ms,
171         //Maybe you can add this dir to the ueventd.rc script to parallel processing
172         if (t.duration() > 50ms) {
173             LOG(INFO) << "took " << t.duration().count() <<"ms restorecon '"
174                         << dir.c_str() << "' on process '" << process_num  <<"'";
175         }
176     }
177 
178     //Calculate process restorecon time
179     LOG(VERBOSE) << "took " << t_process.duration().count() << "ms on process '"
180                 << process_num  << "'";
181 }
182 
GenerateRestoreCon(const std::string & directory)183 void ColdBoot::GenerateRestoreCon(const std::string& directory) {
184     std::unique_ptr<DIR, decltype(&closedir)> dir(opendir(directory.c_str()), &closedir);
185 
186     if (!dir) {
187         PLOG(WARNING) << "opendir " << directory.c_str();
188         return;
189     }
190 
191     struct dirent* dent;
192     while ((dent = readdir(dir.get())) != NULL) {
193         if (strcmp(dent->d_name, ".") == 0 || strcmp(dent->d_name, "..") == 0) continue;
194 
195         struct stat st;
196         if (fstatat(dirfd(dir.get()), dent->d_name, &st, 0) == -1) continue;
197 
198         if (S_ISDIR(st.st_mode)) {
199             std::string fullpath = directory + "/" + dent->d_name;
200             auto parallel_restorecon =
201                 std::find(parallel_restorecon_queue_.begin(),
202                     parallel_restorecon_queue_.end(), fullpath);
203             if (parallel_restorecon == parallel_restorecon_queue_.end()) {
204                 restorecon_queue_.emplace_back(fullpath);
205             }
206         }
207     }
208 }
209 
RegenerateUevents()210 void ColdBoot::RegenerateUevents() {
211     uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
212         uevent_queue_.emplace_back(uevent);
213         return ListenerAction::kContinue;
214     });
215 }
216 
ForkSubProcesses()217 void ColdBoot::ForkSubProcesses() {
218     for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
219         auto pid = fork();
220         if (pid < 0) {
221             PLOG(FATAL) << "fork() failed!";
222         }
223 
224         if (pid == 0) {
225             UeventHandlerMain(i, num_handler_subprocesses_);
226             if (enable_parallel_restorecon_) {
227                 RestoreConHandler(i, num_handler_subprocesses_);
228             }
229             _exit(EXIT_SUCCESS);
230         }
231 
232         subprocess_pids_.emplace(pid);
233     }
234 }
235 
WaitForSubProcesses()236 void ColdBoot::WaitForSubProcesses() {
237     // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
238     // stuck.
239     //
240     // When a subprocess crashes, we fatally abort from ueventd.  init will restart ueventd when
241     // init reaps it, and the cold boot process will start again.  If this continues to fail, then
242     // since ueventd is marked as a critical service, init will reboot to bootloader.
243     //
244     // When a subprocess gets stuck, keep ueventd spinning waiting for it.  init has a timeout for
245     // cold boot and will reboot to the bootloader if ueventd does not complete in time.
246     while (!subprocess_pids_.empty()) {
247         int status;
248         pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
249         if (pid == -1) {
250             PLOG(ERROR) << "waitpid() failed";
251             continue;
252         }
253 
254         auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
255         if (it == subprocess_pids_.end()) continue;
256 
257         if (WIFEXITED(status)) {
258             if (WEXITSTATUS(status) == EXIT_SUCCESS) {
259                 subprocess_pids_.erase(it);
260             } else {
261                 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
262             }
263         } else if (WIFSIGNALED(status)) {
264             LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
265         }
266     }
267 }
268 
Run()269 void ColdBoot::Run() {
270     android::base::Timer cold_boot_timer;
271 
272     RegenerateUevents();
273 
274     if (enable_parallel_restorecon_) {
275         if (parallel_restorecon_queue_.empty()) {
276             parallel_restorecon_queue_.emplace_back("/sys");
277             // takes long time for /sys/devices, parallelize it
278             parallel_restorecon_queue_.emplace_back("/sys/devices");
279             LOG(INFO) << "Parallel processing directory is not set, set the default";
280         }
281         for (const auto& dir : parallel_restorecon_queue_) {
282             selinux_android_restorecon(dir.c_str(), 0);
283             GenerateRestoreCon(dir);
284         }
285     }
286 
287     ForkSubProcesses();
288 
289     if (!enable_parallel_restorecon_) {
290         selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
291     }
292 
293     WaitForSubProcesses();
294 
295     android::base::SetProperty(kColdBootDoneProp, "true");
296     LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
297 }
298 
GetConfiguration()299 static UeventdConfiguration GetConfiguration() {
300     if (IsMicrodroid()) {
301         return ParseConfig({"/system/etc/ueventd.rc", "/vendor/etc/ueventd.rc"});
302     }
303 
304     auto hardware = android::base::GetProperty("ro.hardware", "");
305 
306     struct LegacyPathInfo {
307         std::string legacy_path;
308         std::string preferred;
309     };
310     std::vector<LegacyPathInfo> legacy_paths{
311             {"/vendor/ueventd.rc", "/vendor/etc/ueventd.rc"},
312             {"/odm/ueventd.rc", "/odm/etc/ueventd.rc"},
313             {"/ueventd." + hardware + ".rc", "another ueventd.rc file"}};
314 
315     std::vector<std::string> canonical{"/system/etc/ueventd.rc"};
316 
317     if (android::base::GetIntProperty("ro.product.first_api_level", 10000) < __ANDROID_API_T__) {
318         // TODO: Remove these legacy paths once Android S is no longer supported.
319         for (const auto& info : legacy_paths) {
320             canonical.push_back(info.legacy_path);
321         }
322     } else {
323         // Warn if newer device is using legacy paths.
324         for (const auto& info : legacy_paths) {
325             if (access(info.legacy_path.c_str(), F_OK) == 0) {
326                 LOG(FATAL_WITHOUT_ABORT)
327                         << "Legacy ueventd configuration file detected and will not be parsed: "
328                         << info.legacy_path << ". Please move your configuration to "
329                         << info.preferred << " instead.";
330             }
331         }
332     }
333 
334     return ParseConfig(canonical);
335 }
336 
ueventd_main(int argc,char ** argv)337 int ueventd_main(int argc, char** argv) {
338     /*
339      * init sets the umask to 077 for forked processes. We need to
340      * create files with exact permissions, without modification by
341      * the umask.
342      */
343     umask(000);
344 
345     android::base::InitLogging(argv, &android::base::KernelLogger);
346 
347     LOG(INFO) << "ueventd started!";
348 
349     SelinuxSetupKernelLogging();
350     SelabelInitialize();
351 
352     std::vector<std::unique_ptr<UeventHandler>> uevent_handlers;
353 
354     auto ueventd_configuration = GetConfiguration();
355 
356     uevent_handlers.emplace_back(std::make_unique<DeviceHandler>(
357             std::move(ueventd_configuration.dev_permissions),
358             std::move(ueventd_configuration.sysfs_permissions),
359             std::move(ueventd_configuration.subsystems), android::fs_mgr::GetBootDevices(), true));
360     uevent_handlers.emplace_back(std::make_unique<FirmwareHandler>(
361             std::move(ueventd_configuration.firmware_directories),
362             std::move(ueventd_configuration.external_firmware_handlers)));
363 
364     if (ueventd_configuration.enable_modalias_handling) {
365         std::vector<std::string> base_paths = {"/odm/lib/modules", "/vendor/lib/modules"};
366         uevent_handlers.emplace_back(std::make_unique<ModaliasHandler>(base_paths));
367     }
368     UeventListener uevent_listener(ueventd_configuration.uevent_socket_rcvbuf_size);
369 
370     if (!android::base::GetBoolProperty(kColdBootDoneProp, false)) {
371         ColdBoot cold_boot(uevent_listener, uevent_handlers,
372                            ueventd_configuration.enable_parallel_restorecon,
373                            ueventd_configuration.parallel_restorecon_dirs);
374         cold_boot.Run();
375     }
376 
377     for (auto& uevent_handler : uevent_handlers) {
378         uevent_handler->ColdbootDone();
379     }
380 
381     // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
382     signal(SIGCHLD, SIG_IGN);
383     // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
384     // for SIGCHLD above.
385     while (waitpid(-1, nullptr, WNOHANG) > 0) {
386     }
387 
388     // Restore prio before main loop
389     setpriority(PRIO_PROCESS, 0, 0);
390     uevent_listener.Poll([&uevent_handlers](const Uevent& uevent) {
391         for (auto& uevent_handler : uevent_handlers) {
392             uevent_handler->HandleUevent(uevent);
393         }
394         return ListenerAction::kContinue;
395     });
396 
397     return 0;
398 }
399 
400 }  // namespace init
401 }  // namespace android
402