1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23 #ifndef VK_UTIL_H
24 #define VK_UTIL_H
25
26 /* common inlines and macros for vulkan drivers */
27
28 #include <stdlib.h>
29 #include <vulkan/vulkan.h>
30
31 #include "vk_struct_id.h"
32
33 namespace { // anonymous
34
35 struct vk_struct_common {
36 VkStructureType sType;
37 struct vk_struct_common* pNext;
38 };
39
40 struct vk_struct_chain_iterator {
41 vk_struct_common* value;
42 };
43
44 #define vk_foreach_struct(__iter, __start) \
45 for (struct vk_struct_common* __iter = (struct vk_struct_common*)(__start); __iter; \
46 __iter = __iter->pNext)
47
48 #define vk_foreach_struct_const(__iter, __start) \
49 for (const struct vk_struct_common* __iter = (const struct vk_struct_common*)(__start); \
50 __iter; __iter = __iter->pNext)
51
52 /**
53 * A wrapper for a Vulkan output array. A Vulkan output array is one that
54 * follows the convention of the parameters to
55 * vkGetPhysicalDeviceQueueFamilyProperties().
56 *
57 * Example Usage:
58 *
59 * VkResult
60 * vkGetPhysicalDeviceQueueFamilyProperties(
61 * VkPhysicalDevice physicalDevice,
62 * uint32_t* pQueueFamilyPropertyCount,
63 * VkQueueFamilyProperties* pQueueFamilyProperties)
64 * {
65 * VK_OUTARRAY_MAKE(props, pQueueFamilyProperties,
66 * pQueueFamilyPropertyCount);
67 *
68 * vk_outarray_append(&props, p) {
69 * p->queueFlags = ...;
70 * p->queueCount = ...;
71 * }
72 *
73 * vk_outarray_append(&props, p) {
74 * p->queueFlags = ...;
75 * p->queueCount = ...;
76 * }
77 *
78 * return vk_outarray_status(&props);
79 * }
80 */
81 struct __vk_outarray {
82 /** May be null. */
83 void* data;
84
85 /**
86 * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
87 * data is null.
88 */
89 uint32_t cap;
90
91 /**
92 * Count of elements successfully written to the array. Every write is
93 * considered successful if data is null.
94 */
95 uint32_t* filled_len;
96
97 /**
98 * Count of elements that would have been written to the array if its
99 * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
100 * when `*filled_len < wanted_len`.
101 */
102 uint32_t wanted_len;
103 };
104
__vk_outarray_init(struct __vk_outarray * a,void * data,uint32_t * len)105 static inline void __vk_outarray_init(struct __vk_outarray* a, void* data, uint32_t* len) {
106 a->data = data;
107 a->cap = *len;
108 a->filled_len = len;
109 *a->filled_len = 0;
110 a->wanted_len = 0;
111
112 if (a->data == NULL) a->cap = UINT32_MAX;
113 }
114
__vk_outarray_status(const struct __vk_outarray * a)115 static inline VkResult __vk_outarray_status(const struct __vk_outarray* a) {
116 if (*a->filled_len < a->wanted_len)
117 return VK_INCOMPLETE;
118 else
119 return VK_SUCCESS;
120 }
121
__vk_outarray_next(struct __vk_outarray * a,size_t elem_size)122 static inline void* __vk_outarray_next(struct __vk_outarray* a, size_t elem_size) {
123 void* p = NULL;
124
125 a->wanted_len += 1;
126
127 if (*a->filled_len >= a->cap) return NULL;
128
129 if (a->data != NULL) p = ((uint8_t*)a->data) + (*a->filled_len) * elem_size;
130
131 *a->filled_len += 1;
132
133 return p;
134 }
135
136 #define vk_outarray(elem_t) \
137 struct { \
138 struct __vk_outarray base; \
139 elem_t meta[]; \
140 }
141
142 #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
143 #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
144
145 #define vk_outarray_init(a, data, len) __vk_outarray_init(&(a)->base, (data), (len))
146
147 #define VK_OUTARRAY_MAKE(name, data, len) \
148 vk_outarray(__typeof__((data)[0])) name; \
149 vk_outarray_init(&name, (data), (len))
150
151 #define VK_OUTARRAY_MAKE_TYPED(type, name, data, len) \
152 vk_outarray(type) name; \
153 vk_outarray_init(&name, (data), (len))
154
155 #define vk_outarray_status(a) __vk_outarray_status(&(a)->base)
156
157 #define vk_outarray_next(a) vk_outarray_next_typed(vk_outarray_typeof_elem(a), a)
158 #define vk_outarray_next_typed(type, a) \
159 ((type*)__vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
160
161 /**
162 * Append to a Vulkan output array.
163 *
164 * This is a block-based macro. For example:
165 *
166 * vk_outarray_append(&a, elem) {
167 * elem->foo = ...;
168 * elem->bar = ...;
169 * }
170 *
171 * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
172 * VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type
173 * `elem_t *`.
174 *
175 * The macro unconditionally increments the array's `wanted_len`. If the array
176 * is not full, then the macro also increment its `filled_len` and then
177 * executes the block. When the block is executed, `elem` is non-null and
178 * points to the newly appended element.
179 */
180 #define vk_outarray_append(a, elem) \
181 for (vk_outarray_typeof_elem(a)* elem = vk_outarray_next(a); elem != NULL; elem = NULL)
182
183 #define vk_outarray_append_typed(type, a, elem) \
184 for (type* elem = vk_outarray_next_typed(type, a); elem != NULL; elem = NULL)
185
__vk_find_struct(void * start,VkStructureType sType)186 static inline void* __vk_find_struct(void* start, VkStructureType sType) {
187 vk_foreach_struct(s, start) {
188 if (s->sType == sType) return s;
189 }
190
191 return NULL;
192 }
193
194 template <class T, class H>
vk_find_struct(H * head)195 T* vk_find_struct(H* head) {
196 (void)vk_get_vk_struct_id<H>::id;
197 return static_cast<T*>(__vk_find_struct(static_cast<void*>(head), vk_get_vk_struct_id<T>::id));
198 }
199
200 template <class T, class H>
vk_find_struct(const H * head)201 const T* vk_find_struct(const H* head) {
202 (void)vk_get_vk_struct_id<H>::id;
203 return static_cast<const T*>(__vk_find_struct(const_cast<void*>(static_cast<const void*>(head)),
204 vk_get_vk_struct_id<T>::id));
205 }
206
207 uint32_t vk_get_driver_version(void);
208
209 uint32_t vk_get_version_override(void);
210
211 #define VK_EXT_OFFSET (1000000000UL)
212 #define VK_ENUM_EXTENSION(__enum) \
213 ((__enum) >= VK_EXT_OFFSET ? ((((__enum)-VK_EXT_OFFSET) / 1000UL) + 1) : 0)
214 #define VK_ENUM_OFFSET(__enum) ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
215
216 template <class T>
vk_make_orphan_copy(const T & vk_struct)217 T vk_make_orphan_copy(const T& vk_struct) {
218 T copy = vk_struct;
219 copy.pNext = NULL;
220 return copy;
221 }
222
223 template <class T>
vk_make_chain_iterator(T * vk_struct)224 vk_struct_chain_iterator vk_make_chain_iterator(T* vk_struct) {
225 (void)vk_get_vk_struct_id<T>::id;
226 vk_struct_chain_iterator result = {reinterpret_cast<vk_struct_common*>(vk_struct)};
227 return result;
228 }
229
230 template <class T>
vk_append_struct(vk_struct_chain_iterator * i,T * vk_struct)231 void vk_append_struct(vk_struct_chain_iterator* i, T* vk_struct) {
232 (void)vk_get_vk_struct_id<T>::id;
233
234 vk_struct_common* p = i->value;
235 if (p->pNext) {
236 ::abort();
237 }
238
239 p->pNext = reinterpret_cast<vk_struct_common*>(vk_struct);
240 vk_struct->pNext = NULL;
241
242 *i = vk_make_chain_iterator(vk_struct);
243 }
244
vk_descriptor_type_has_image_view(VkDescriptorType type)245 bool vk_descriptor_type_has_image_view(VkDescriptorType type) {
246 switch (type) {
247 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
248 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
249 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
250 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
251 return true;
252 default:
253 return false;
254 }
255 }
256
vk_descriptor_type_has_descriptor_buffer(VkDescriptorType type)257 bool vk_descriptor_type_has_descriptor_buffer(VkDescriptorType type) {
258 switch (type) {
259 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
260 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
261 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
262 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
263 return true;
264 default:
265 return false;
266 }
267 }
268
vk_descriptor_type_has_texel_buffer(VkDescriptorType type)269 bool vk_descriptor_type_has_texel_buffer(VkDescriptorType type) {
270 switch (type) {
271 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
272 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
273 return true;
274 default:
275 return false;
276 }
277 }
278
279 } // namespace
280
281 #endif /* VK_UTIL_H */
282