1 /******************************************************************************
2  *
3  *  Copyright 2008-2012 Broadcom Corporation
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 /******************************************************************************
20  *
21  *  This file contains the implementation of the AES128 and AES CMAC algorithm.
22  *
23  ******************************************************************************/
24 
25 #include <bluetooth/log.h>
26 
27 #include <algorithm>
28 #include <cstdint>
29 
30 #include "aes.h"
31 #include "crypto_toolbox.h"
32 #include "hci/octets.h"
33 
34 using bluetooth::hci::kOctet16Length;
35 using bluetooth::hci::Octet16;
36 
37 namespace crypto_toolbox {
38 
39 namespace {
40 
41 typedef struct {
42   uint8_t* text;
43   uint16_t len;
44   uint16_t round;
45 } tCMAC_CB;
46 
47 thread_local tCMAC_CB cmac_cb;
48 
49 /* Rb for AES-128 as block cipher, LSB as [0] */
50 Octet16 const_Rb{0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
51 
52 /** utility function to do an biteise exclusive-OR of two bit strings of the
53  * length of kOctet16Length. Result is stored in first argument.
54  */
xor_128(Octet16 * a,const Octet16 & b)55 static void xor_128(Octet16* a, const Octet16& b) {
56   uint8_t i, *aa = a->data();
57   const uint8_t* bb = b.data();
58 
59   for (i = 0; i < kOctet16Length; i++) {
60     aa[i] = aa[i] ^ bb[i];
61   }
62 }
63 }  // namespace
64 
65 /* This function computes AES_128(key, message) */
aes_128(const Octet16 & key,const Octet16 & message)66 Octet16 aes_128(const Octet16& key, const Octet16& message) {
67   Octet16 key_reversed;
68   Octet16 message_reversed;
69   Octet16 output;
70 
71   std::reverse_copy(key.begin(), key.end(), key_reversed.begin());
72   std::reverse_copy(message.begin(), message.end(), message_reversed.begin());
73 
74   aes_context ctx;
75   aes_set_key(key_reversed.data(), key_reversed.size(), &ctx);
76   aes_encrypt(message_reversed.data(), output.data(), &ctx);
77 
78   std::reverse(output.begin(), output.end());
79   return output;
80 }
81 
82 /** utility function to padding the given text to be a 128 bits data. The
83  * parameter dest is input and output parameter, it must point to a
84  * kOctet16Length memory space; where include length bytes valid data. */
padding(Octet16 * dest,uint8_t length)85 static void padding(Octet16* dest, uint8_t length) {
86   uint8_t i, *p = dest->data();
87   /* original last block */
88   for (i = length; i < kOctet16Length; i++) p[kOctet16Length - i - 1] = (i == length) ? 0x80 : 0;
89 }
90 
91 /** utility function to left shift one bit for a 128 bits value. */
leftshift_onebit(uint8_t * input,uint8_t * output)92 static void leftshift_onebit(uint8_t* input, uint8_t* output) {
93   uint8_t i, overflow = 0, next_overflow = 0;
94   /* input[0] is LSB */
95   for (i = 0; i < kOctet16Length; i++) {
96     next_overflow = (input[i] & 0x80) ? 1 : 0;
97     output[i] = (input[i] << 1) | overflow;
98     overflow = next_overflow;
99   }
100   return;
101 }
102 
103 /** This function is the calculation of block cipher using AES-128. */
cmac_aes_k_calculate(const Octet16 & key)104 static Octet16 cmac_aes_k_calculate(const Octet16& key) {
105   Octet16 output;
106   Octet16 x{0};  // zero initialized
107 
108   uint16_t i = 1;
109   while (i <= cmac_cb.round) {
110     /* Mi' := Mi (+) X  */
111     xor_128((Octet16*)&cmac_cb.text[(cmac_cb.round - i) * kOctet16Length], x);
112 
113     output = aes_128(key, *(Octet16*)&cmac_cb.text[(cmac_cb.round - i) * kOctet16Length]);
114     x = output;
115     i++;
116   }
117 
118   return output;
119 }
120 
121 /** This function proceeed to prepare the last block of message Mn depending on
122  * the size of the message.
123  */
cmac_prepare_last_block(const Octet16 & k1,const Octet16 & k2)124 static void cmac_prepare_last_block(const Octet16& k1, const Octet16& k2) {
125   //    uint8_t     x[16] = {0};
126   bool flag;
127 
128   /* last block is a complete block set flag to 1 */
129   flag = ((cmac_cb.len % kOctet16Length) == 0 && cmac_cb.len != 0) ? true : false;
130 
131   if (flag) { /* last block is complete block */
132     xor_128((Octet16*)&cmac_cb.text[0], k1);
133   } else /* padding then xor with k2 */
134   {
135     padding((Octet16*)&cmac_cb.text[0], (uint8_t)(cmac_cb.len % 16));
136 
137     xor_128((Octet16*)&cmac_cb.text[0], k2);
138   }
139 }
140 
141 /** This is the function to generate the two subkeys.
142  * |key| is CMAC key, expect SRK when used by SMP.
143  */
cmac_generate_subkey(const Octet16 & key)144 static void cmac_generate_subkey(const Octet16& key) {
145   Octet16 zero{};
146   Octet16 p = aes_128(key, zero);
147 
148   Octet16 k1, k2;
149   uint8_t* pp = p.data();
150 
151   /* If MSB(L) = 0, then K1 = L << 1 */
152   if ((pp[kOctet16Length - 1] & 0x80) != 0) {
153     /* Else K1 = ( L << 1 ) (+) Rb */
154     leftshift_onebit(pp, k1.data());
155     xor_128(&k1, const_Rb);
156   } else {
157     leftshift_onebit(pp, k1.data());
158   }
159 
160   if ((k1[kOctet16Length - 1] & 0x80) != 0) {
161     /* K2 =  (K1 << 1) (+) Rb */
162     leftshift_onebit(k1.data(), k2.data());
163     xor_128(&k2, const_Rb);
164   } else {
165     /* If MSB(K1) = 0, then K2 = K1 << 1 */
166     leftshift_onebit(k1.data(), k2.data());
167   }
168 
169   cmac_prepare_last_block(k1, k2);
170 }
171 
172 /** key - CMAC key in little endian order
173  *  input - text to be signed in little endian byte order.
174  *  length - length of the input in byte.
175  */
aes_cmac(const Octet16 & key,const uint8_t * input,uint16_t length)176 Octet16 aes_cmac(const Octet16& key, const uint8_t* input, uint16_t length) {
177   uint32_t len;
178   uint16_t diff;
179   /* n is number of rounds */
180   uint16_t n = (length + kOctet16Length - 1) / kOctet16Length;
181 
182   if (n == 0) n = 1;
183   len = n * kOctet16Length;
184 
185   // log::verbose("AES128_CMAC started, allocate buffer size={}", len);
186 
187   /* allocate a memory space of multiple of 16 bytes to hold text  */
188   cmac_cb.text = (uint8_t*)alloca(len);
189   cmac_cb.round = n;
190   diff = len - length;
191 
192   if (input != NULL && length > 0) {
193     memcpy(&cmac_cb.text[diff], input, (int)length);
194     cmac_cb.len = length;
195   } else {
196     cmac_cb.len = 0;
197   }
198 
199   /* prepare calculation for subkey s and last block of data */
200   cmac_generate_subkey(key);
201   /* start calculation */
202   Octet16 signature = cmac_aes_k_calculate(key);
203 
204   /* clean up */
205   memset(&cmac_cb, 0, sizeof(tCMAC_CB));
206   // cmac_cb.text is auto-freed by alloca
207 
208   return signature;
209 }
210 
211 }  // namespace crypto_toolbox
212