1 /*
2  * Copyright 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #pragma once
18 
19 #include <binder/Common.h>
20 #include <binder/IInterface.h>
21 #include <binder/Parcel.h>
22 
23 // Set to 1 to enable CallStacks when logging errors
24 #define SI_DUMP_CALLSTACKS 0
25 #if SI_DUMP_CALLSTACKS
26 #include <utils/CallStack.h>
27 #endif
28 
29 #include <utils/NativeHandle.h>
30 
31 #include <functional>
32 #include <type_traits>
33 
34 namespace android {
35 namespace SafeInterface {
36 
37 // ParcelHandler is responsible for writing/reading various types to/from a Parcel in a generic way
38 class LIBBINDER_EXPORTED ParcelHandler {
39 public:
ParcelHandler(const char * logTag)40     explicit ParcelHandler(const char* logTag) : mLogTag(logTag) {}
41 
42     // Specializations for types with dedicated handling in Parcel
read(const Parcel & parcel,bool * b)43     status_t read(const Parcel& parcel, bool* b) const {
44         return callParcel("readBool", [&]() { return parcel.readBool(b); });
45     }
write(Parcel * parcel,bool b)46     status_t write(Parcel* parcel, bool b) const {
47         return callParcel("writeBool", [&]() { return parcel->writeBool(b); });
48     }
49     template <typename E>
read(const Parcel & parcel,E * e)50     typename std::enable_if<std::is_enum<E>::value, status_t>::type read(const Parcel& parcel,
51                                                                          E* e) const {
52         typename std::underlying_type<E>::type u{};
53         status_t result = read(parcel, &u);
54         *e = static_cast<E>(u);
55         return result;
56     }
57     template <typename E>
write(Parcel * parcel,E e)58     typename std::enable_if<std::is_enum<E>::value, status_t>::type write(Parcel* parcel,
59                                                                           E e) const {
60         return write(parcel, static_cast<typename std::underlying_type<E>::type>(e));
61     }
62     template <typename T>
read(const Parcel & parcel,T * t)63     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
64             const Parcel& parcel, T* t) const {
65         return callParcel("read(Flattenable)", [&]() { return parcel.read(*t); });
66     }
67     template <typename T>
write(Parcel * parcel,const T & t)68     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
69             Parcel* parcel, const T& t) const {
70         return callParcel("write(Flattenable)", [&]() { return parcel->write(t); });
71     }
72     template <typename T>
read(const Parcel & parcel,sp<T> * t)73     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type read(
74             const Parcel& parcel, sp<T>* t) const {
75         *t = new T{};
76         return callParcel("read(sp<Flattenable>)", [&]() { return parcel.read(*(t->get())); });
77     }
78     template <typename T>
write(Parcel * parcel,const sp<T> & t)79     typename std::enable_if<std::is_base_of<Flattenable<T>, T>::value, status_t>::type write(
80             Parcel* parcel, const sp<T>& t) const {
81         return callParcel("write(sp<Flattenable>)", [&]() { return parcel->write(*(t.get())); });
82     }
83     template <typename T>
read(const Parcel & parcel,T * t)84     typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type read(
85             const Parcel& parcel, T* t) const {
86         return callParcel("read(LightFlattenable)", [&]() { return parcel.read(*t); });
87     }
88     template <typename T>
write(Parcel * parcel,const T & t)89     typename std::enable_if<std::is_base_of<LightFlattenable<T>, T>::value, status_t>::type write(
90             Parcel* parcel, const T& t) const {
91         return callParcel("write(LightFlattenable)", [&]() { return parcel->write(t); });
92     }
93     template <typename NH>
read(const Parcel & parcel,NH * nh)94     typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type read(
95             const Parcel& parcel, NH* nh) {
96         *nh = NativeHandle::create(parcel.readNativeHandle(), true);
97         return NO_ERROR;
98     }
99     template <typename NH>
write(Parcel * parcel,const NH & nh)100     typename std::enable_if<std::is_same<NH, sp<NativeHandle>>::value, status_t>::type write(
101             Parcel* parcel, const NH& nh) {
102         return callParcel("write(sp<NativeHandle>)",
103                           [&]() { return parcel->writeNativeHandle(nh->handle()); });
104     }
105     template <typename T>
read(const Parcel & parcel,T * t)106     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
107             const Parcel& parcel, T* t) const {
108         return callParcel("readParcelable", [&]() { return parcel.readParcelable(t); });
109     }
110     template <typename T>
write(Parcel * parcel,const T & t)111     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
112             Parcel* parcel, const T& t) const {
113         return callParcel("writeParcelable", [&]() { return parcel->writeParcelable(t); });
114     }
read(const Parcel & parcel,String8 * str)115     status_t read(const Parcel& parcel, String8* str) const {
116         return callParcel("readString8", [&]() { return parcel.readString8(str); });
117     }
write(Parcel * parcel,const String8 & str)118     status_t write(Parcel* parcel, const String8& str) const {
119         return callParcel("writeString8", [&]() { return parcel->writeString8(str); });
120     }
121     template <typename T>
read(const Parcel & parcel,sp<T> * pointer)122     typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type read(
123             const Parcel& parcel, sp<T>* pointer) const {
124         return callParcel("readNullableStrongBinder",
125                           [&]() { return parcel.readNullableStrongBinder(pointer); });
126     }
127     template <typename T>
write(Parcel * parcel,const sp<T> & pointer)128     typename std::enable_if<std::is_same<IBinder, T>::value, status_t>::type write(
129             Parcel* parcel, const sp<T>& pointer) const {
130         return callParcel("writeStrongBinder",
131                           [&]() { return parcel->writeStrongBinder(pointer); });
132     }
133     template <typename T>
read(const Parcel & parcel,sp<T> * pointer)134     typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type read(
135             const Parcel& parcel, sp<T>* pointer) const {
136         return callParcel("readNullableStrongBinder[IInterface]",
137                           [&]() { return parcel.readNullableStrongBinder(pointer); });
138     }
139     template <typename T>
write(Parcel * parcel,const sp<T> & interface)140     typename std::enable_if<std::is_base_of<IInterface, T>::value, status_t>::type write(
141             Parcel* parcel, const sp<T>& interface) const {
142         return write(parcel, IInterface::asBinder(interface));
143     }
144     template <typename T>
read(const Parcel & parcel,std::vector<T> * v)145     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type read(
146             const Parcel& parcel, std::vector<T>* v) const {
147         return callParcel("readParcelableVector", [&]() { return parcel.readParcelableVector(v); });
148     }
149     template <typename T>
write(Parcel * parcel,const std::vector<T> & v)150     typename std::enable_if<std::is_base_of<Parcelable, T>::value, status_t>::type write(
151             Parcel* parcel, const std::vector<T>& v) const {
152         return callParcel("writeParcelableVector",
153                           [&]() { return parcel->writeParcelableVector(v); });
154     }
read(const Parcel & parcel,float * f)155     status_t read(const Parcel& parcel, float* f) const {
156         return callParcel("readFloat", [&]() { return parcel.readFloat(f); });
157     }
write(Parcel * parcel,float f)158     status_t write(Parcel* parcel, float f) const {
159         return callParcel("writeFloat", [&]() { return parcel->writeFloat(f); });
160     }
161 
162     // Templates to handle integral types. We use a struct template to require that the called
163     // function exactly matches the signedness and size of the argument (e.g., the argument isn't
164     // silently widened).
165     template <bool isSigned, size_t size, typename I>
166     struct HandleInt;
167     template <typename I>
168     struct HandleInt<true, 4, I> {
169         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
170             return handler.callParcel("readInt32", [&]() { return parcel.readInt32(i); });
171         }
172         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
173             return handler.callParcel("writeInt32", [&]() { return parcel->writeInt32(i); });
174         }
175     };
176     template <typename I>
177     struct HandleInt<false, 4, I> {
178         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
179             return handler.callParcel("readUint32", [&]() { return parcel.readUint32(i); });
180         }
181         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
182             return handler.callParcel("writeUint32", [&]() { return parcel->writeUint32(i); });
183         }
184     };
185     template <typename I>
186     struct HandleInt<true, 8, I> {
187         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
188             return handler.callParcel("readInt64", [&]() { return parcel.readInt64(i); });
189         }
190         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
191             return handler.callParcel("writeInt64", [&]() { return parcel->writeInt64(i); });
192         }
193     };
194     template <typename I>
195     struct HandleInt<false, 8, I> {
196         static status_t read(const ParcelHandler& handler, const Parcel& parcel, I* i) {
197             return handler.callParcel("readUint64", [&]() { return parcel.readUint64(i); });
198         }
199         static status_t write(const ParcelHandler& handler, Parcel* parcel, I i) {
200             return handler.callParcel("writeUint64", [&]() { return parcel->writeUint64(i); });
201         }
202     };
203     template <typename I>
204     typename std::enable_if<std::is_integral<I>::value, status_t>::type read(const Parcel& parcel,
205                                                                              I* i) const {
206         return HandleInt<std::is_signed<I>::value, sizeof(I), I>::read(*this, parcel, i);
207     }
208     template <typename I>
209     typename std::enable_if<std::is_integral<I>::value, status_t>::type write(Parcel* parcel,
210                                                                               I i) const {
211         return HandleInt<std::is_signed<I>::value, sizeof(I), I>::write(*this, parcel, i);
212     }
213 
214 private:
215     const char* const mLogTag;
216 
217     // Helper to encapsulate error handling while calling the various Parcel methods
218     template <typename Function>
219     status_t callParcel(const char* name, Function f) const {
220         status_t error = f();
221         if (error != NO_ERROR) [[unlikely]] {
222             ALOG(LOG_ERROR, mLogTag, "Failed to %s, (%d: %s)", name, error, strerror(-error));
223 #if SI_DUMP_CALLSTACKS
224             CallStack callStack(mLogTag);
225 #endif
226         }
227         return error;
228     }
229 };
230 
231 // Utility struct template which allows us to retrieve the types of the parameters of a member
232 // function pointer
233 template <typename T>
234 struct ParamExtractor;
235 template <typename Class, typename Return, typename... Params>
236 struct ParamExtractor<Return (Class::*)(Params...)> {
237     using ParamTuple = std::tuple<Params...>;
238 };
239 template <typename Class, typename Return, typename... Params>
240 struct ParamExtractor<Return (Class::*)(Params...) const> {
241     using ParamTuple = std::tuple<Params...>;
242 };
243 
244 } // namespace SafeInterface
245 
246 template <typename Interface>
247 class LIBBINDER_EXPORTED SafeBpInterface : public BpInterface<Interface> {
248 protected:
249     SafeBpInterface(const sp<IBinder>& impl, const char* logTag)
250           : BpInterface<Interface>(impl), mLogTag(logTag) {}
251     ~SafeBpInterface() override = default;
252 
253     // callRemote is used to invoke a synchronous procedure call over Binder
254     template <typename Method, typename TagType, typename... Args>
255     status_t callRemote(TagType tag, Args&&... args) const {
256         static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");
257 
258         // Verify that the arguments are compatible with the parameters
259         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
260         static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
261                       "Invalid argument type");
262 
263         // Write the input arguments to the data Parcel
264         Parcel data;
265         data.writeInterfaceToken(this->getInterfaceDescriptor());
266 
267         status_t error = writeInputs(&data, std::forward<Args>(args)...);
268         if (error != NO_ERROR) [[unlikely]] {
269             // A message will have been logged by writeInputs
270             return error;
271         }
272 
273         // Send the data Parcel to the remote and retrieve the reply parcel
274         Parcel reply;
275         error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply);
276         if (error != NO_ERROR) [[unlikely]] {
277             ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
278 #if SI_DUMP_CALLSTACKS
279             CallStack callStack(mLogTag);
280 #endif
281             return error;
282         }
283 
284         // Read the outputs from the reply Parcel into the output arguments
285         error = readOutputs(reply, std::forward<Args>(args)...);
286         if (error != NO_ERROR) [[unlikely]] {
287             // A message will have been logged by readOutputs
288             return error;
289         }
290 
291         // Retrieve the result code from the reply Parcel
292         status_t result = NO_ERROR;
293         error = reply.readInt32(&result);
294         if (error != NO_ERROR) [[unlikely]] {
295             ALOG(LOG_ERROR, mLogTag, "Failed to obtain result");
296 #if SI_DUMP_CALLSTACKS
297             CallStack callStack(mLogTag);
298 #endif
299             return error;
300         }
301         return result;
302     }
303 
304     // callRemoteAsync is used to invoke an asynchronous procedure call over Binder
305     template <typename Method, typename TagType, typename... Args>
306     void callRemoteAsync(TagType tag, Args&&... args) const {
307         static_assert(sizeof(TagType) <= sizeof(uint32_t), "Tag must fit inside uint32_t");
308 
309         // Verify that the arguments are compatible with the parameters
310         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
311         static_assert(ArgsMatchParams<std::tuple<Args...>, ParamTuple>::value,
312                       "Invalid argument type");
313 
314         // Write the input arguments to the data Parcel
315         Parcel data;
316         data.writeInterfaceToken(this->getInterfaceDescriptor());
317         status_t error = writeInputs(&data, std::forward<Args>(args)...);
318         if (error != NO_ERROR) [[unlikely]] {
319             // A message will have been logged by writeInputs
320             return;
321         }
322 
323         // There will be no data in the reply Parcel since the call is one-way
324         Parcel reply;
325         error = this->remote()->transact(static_cast<uint32_t>(tag), data, &reply,
326                                          IBinder::FLAG_ONEWAY);
327         if (error != NO_ERROR) [[unlikely]] {
328             ALOG(LOG_ERROR, mLogTag, "Failed to transact (%d)", error);
329 #if SI_DUMP_CALLSTACKS
330             CallStack callStack(mLogTag);
331 #endif
332         }
333     }
334 
335 private:
336     const char* const mLogTag;
337 
338     // This struct provides information on whether the decayed types of the elements at Index in the
339     // tuple types T and U (that is, the types after stripping cv-qualifiers, removing references,
340     // and a few other less common operations) are the same
341     template <size_t Index, typename T, typename U>
342     struct DecayedElementsMatch {
343     private:
344         using FirstT = typename std::tuple_element<Index, T>::type;
345         using DecayedT = typename std::decay<FirstT>::type;
346         using FirstU = typename std::tuple_element<Index, U>::type;
347         using DecayedU = typename std::decay<FirstU>::type;
348 
349     public:
350         static constexpr bool value = std::is_same<DecayedT, DecayedU>::value;
351     };
352 
353     // When comparing whether the argument types match the parameter types, we first decay them (see
354     // DecayedElementsMatch) to avoid falsely flagging, say, T&& against T even though they are
355     // equivalent enough for our purposes
356     template <typename T, typename U>
357     struct ArgsMatchParams {};
358     template <typename... Args, typename... Params>
359     struct ArgsMatchParams<std::tuple<Args...>, std::tuple<Params...>> {
360         static_assert(sizeof...(Args) <= sizeof...(Params), "Too many arguments");
361         static_assert(sizeof...(Args) >= sizeof...(Params), "Not enough arguments");
362 
363     private:
364         template <size_t Index>
365         static constexpr typename std::enable_if<(Index < sizeof...(Args)), bool>::type
366         elementsMatch() {
367             if (!DecayedElementsMatch<Index, std::tuple<Args...>, std::tuple<Params...>>::value) {
368                 return false;
369             }
370             return elementsMatch<Index + 1>();
371         }
372         template <size_t Index>
373         static constexpr typename std::enable_if<(Index >= sizeof...(Args)), bool>::type
374         elementsMatch() {
375             return true;
376         }
377 
378     public:
379         static constexpr bool value = elementsMatch<0>();
380     };
381 
382     // Since we assume that pointer arguments are outputs, we can use this template struct to
383     // determine whether or not a given argument is fundamentally a pointer type and thus an output
384     template <typename T>
385     struct IsPointerIfDecayed {
386     private:
387         using Decayed = typename std::decay<T>::type;
388 
389     public:
390         static constexpr bool value = std::is_pointer<Decayed>::value;
391     };
392 
393     template <typename T>
394     typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
395             Parcel* data, T&& t) const {
396         return SafeInterface::ParcelHandler{mLogTag}.write(data, std::forward<T>(t));
397     }
398     template <typename T>
399     typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type writeIfInput(
400             Parcel* /*data*/, T&& /*t*/) const {
401         return NO_ERROR;
402     }
403 
404     // This method iterates through all of the arguments, writing them to the data Parcel if they
405     // are an input (i.e., if they are not a pointer type)
406     template <typename T, typename... Remaining>
407     status_t writeInputs(Parcel* data, T&& t, Remaining&&... remaining) const {
408         status_t error = writeIfInput(data, std::forward<T>(t));
409         if (error != NO_ERROR) [[unlikely]] {
410             // A message will have been logged by writeIfInput
411             return error;
412         }
413         return writeInputs(data, std::forward<Remaining>(remaining)...);
414     }
415     static status_t writeInputs(Parcel* /*data*/) { return NO_ERROR; }
416 
417     template <typename T>
418     typename std::enable_if<IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
419             const Parcel& reply, T&& t) const {
420         return SafeInterface::ParcelHandler{mLogTag}.read(reply, std::forward<T>(t));
421     }
422     template <typename T>
423     static typename std::enable_if<!IsPointerIfDecayed<T>::value, status_t>::type readIfOutput(
424             const Parcel& /*reply*/, T&& /*t*/) {
425         return NO_ERROR;
426     }
427 
428     // Similar to writeInputs except that it reads output arguments from the reply Parcel
429     template <typename T, typename... Remaining>
430     status_t readOutputs(const Parcel& reply, T&& t, Remaining&&... remaining) const {
431         status_t error = readIfOutput(reply, std::forward<T>(t));
432         if (error != NO_ERROR) [[unlikely]] {
433             // A message will have been logged by readIfOutput
434             return error;
435         }
436         return readOutputs(reply, std::forward<Remaining>(remaining)...);
437     }
438     static status_t readOutputs(const Parcel& /*data*/) { return NO_ERROR; }
439 };
440 
441 template <typename Interface>
442 class LIBBINDER_EXPORTED SafeBnInterface : public BnInterface<Interface> {
443 public:
444     explicit SafeBnInterface(const char* logTag) : mLogTag(logTag) {}
445 
446 protected:
447     template <typename Method>
448     status_t callLocal(const Parcel& data, Parcel* reply, Method method) {
449         CHECK_INTERFACE(this, data, reply);
450 
451         // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
452         // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
453         // outputs. When we ultimately call into the method, we will pass the addresses of the
454         // output arguments instead of their tuple members directly, but the storage will live in
455         // the tuple.
456         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
457         typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};
458 
459         // Read the inputs from the data Parcel into the argument tuple
460         status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
461         if (error != NO_ERROR) [[unlikely]] {
462             // A message will have been logged by read
463             return error;
464         }
465 
466         // Call the local method
467         status_t result = MethodCaller<ParamTuple>::call(this, method, &rawArgs);
468 
469         // Extract the outputs from the argument tuple and write them into the reply Parcel
470         error = OutputWriter<ParamTuple>{mLogTag}.writeOutputs(reply, &rawArgs);
471         if (error != NO_ERROR) [[unlikely]] {
472             // A message will have been logged by write
473             return error;
474         }
475 
476         // Return the result code in the reply Parcel
477         error = reply->writeInt32(result);
478         if (error != NO_ERROR) [[unlikely]] {
479             ALOG(LOG_ERROR, mLogTag, "Failed to write result");
480 #if SI_DUMP_CALLSTACKS
481             CallStack callStack(mLogTag);
482 #endif
483             return error;
484         }
485         return NO_ERROR;
486     }
487 
488     template <typename Method>
489     status_t callLocalAsync(const Parcel& data, Parcel* /*reply*/, Method method) {
490         // reply is not actually used by CHECK_INTERFACE
491         CHECK_INTERFACE(this, data, reply);
492 
493         // Since we need to both pass inputs into the call as well as retrieve outputs, we create a
494         // "raw" tuple, where the inputs are interleaved with actual, non-pointer versions of the
495         // outputs. When we ultimately call into the method, we will pass the addresses of the
496         // output arguments instead of their tuple members directly, but the storage will live in
497         // the tuple.
498         using ParamTuple = typename SafeInterface::ParamExtractor<Method>::ParamTuple;
499         typename RawConverter<std::tuple<>, ParamTuple>::type rawArgs{};
500 
501         // Read the inputs from the data Parcel into the argument tuple
502         status_t error = InputReader<ParamTuple>{mLogTag}.readInputs(data, &rawArgs);
503         if (error != NO_ERROR) [[unlikely]] {
504             // A message will have been logged by read
505             return error;
506         }
507 
508         // Call the local method
509         MethodCaller<ParamTuple>::callVoid(this, method, &rawArgs);
510 
511         // After calling, there is nothing more to do since asynchronous calls do not return a value
512         // to the caller
513         return NO_ERROR;
514     }
515 
516 private:
517     const char* const mLogTag;
518 
519     // RemoveFirst strips the first element from a tuple.
520     // For example, given T = std::tuple<A, B, C>, RemoveFirst<T>::type = std::tuple<B, C>
521     template <typename T, typename... Args>
522     struct RemoveFirst;
523     template <typename T, typename... Args>
524     struct RemoveFirst<std::tuple<T, Args...>> {
525         using type = std::tuple<Args...>;
526     };
527 
528     // RawConverter strips a tuple down to its fundamental types, discarding both pointers and
529     // references. This allows us to allocate storage for both input (non-pointer) arguments and
530     // output (pointer) arguments in one tuple.
531     // For example, given T = std::tuple<const A&, B*>, RawConverter<T>::type = std::tuple<A, B>
532     template <typename Unconverted, typename... Converted>
533     struct RawConverter;
534     template <typename Unconverted, typename... Converted>
535     struct RawConverter<std::tuple<Converted...>, Unconverted> {
536     private:
537         using ElementType = typename std::tuple_element<0, Unconverted>::type;
538         using Decayed = typename std::decay<ElementType>::type;
539         using WithoutPointer = typename std::remove_pointer<Decayed>::type;
540 
541     public:
542         using type = typename RawConverter<std::tuple<Converted..., WithoutPointer>,
543                                            typename RemoveFirst<Unconverted>::type>::type;
544     };
545     template <typename... Converted>
546     struct RawConverter<std::tuple<Converted...>, std::tuple<>> {
547         using type = std::tuple<Converted...>;
548     };
549 
550     // This provides a simple way to determine whether the indexed element of Args... is a pointer
551     template <size_t I, typename... Args>
552     struct ElementIsPointer {
553     private:
554         using ElementType = typename std::tuple_element<I, std::tuple<Args...>>::type;
555 
556     public:
557         static constexpr bool value = std::is_pointer<ElementType>::value;
558     };
559 
560     // This class iterates over the parameter types, and if a given parameter is an input
561     // (i.e., is not a pointer), reads the corresponding argument tuple element from the data Parcel
562     template <typename... Params>
563     class InputReader;
564     template <typename... Params>
565     class InputReader<std::tuple<Params...>> {
566     public:
567         explicit InputReader(const char* logTag) : mLogTag(logTag) {}
568 
569         // Note that in this case (as opposed to in SafeBpInterface), we iterate using an explicit
570         // index (starting with 0 here) instead of using recursion and stripping the first element.
571         // This is because in SafeBpInterface we aren't actually operating on a real tuple, but are
572         // instead just using a tuple as a convenient container for variadic types, whereas here we
573         // can't modify the argument tuple without causing unnecessary copies or moves of the data
574         // contained therein.
575         template <typename RawTuple>
576         status_t readInputs(const Parcel& data, RawTuple* args) {
577             return dispatchArg<0>(data, args);
578         }
579 
580     private:
581         const char* const mLogTag;
582 
583         template <std::size_t I, typename RawTuple>
584         typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
585                 const Parcel& data, RawTuple* args) {
586             return SafeInterface::ParcelHandler{mLogTag}.read(data, &std::get<I>(*args));
587         }
588         template <std::size_t I, typename RawTuple>
589         typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type readIfInput(
590                 const Parcel& /*data*/, RawTuple* /*args*/) {
591             return NO_ERROR;
592         }
593 
594         // Recursively iterate through the arguments
595         template <std::size_t I, typename RawTuple>
596         typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
597                 const Parcel& data, RawTuple* args) {
598             status_t error = readIfInput<I>(data, args);
599             if (error != NO_ERROR) [[unlikely]] {
600                 // A message will have been logged in read
601                 return error;
602             }
603             return dispatchArg<I + 1>(data, args);
604         }
605         template <std::size_t I, typename RawTuple>
606         typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
607                 const Parcel& /*data*/, RawTuple* /*args*/) {
608             return NO_ERROR;
609         }
610     };
611 
612     // getForCall uses the types of the parameters to determine whether a given element of the
613     // argument tuple is an input, which should be passed directly into the call, or an output, for
614     // which its address should be passed into the call
615     template <size_t I, typename RawTuple, typename... Params>
616     static typename std::enable_if<
617             ElementIsPointer<I, Params...>::value,
618             typename std::tuple_element<I, std::tuple<Params...>>::type>::type
619     getForCall(RawTuple* args) {
620         return &std::get<I>(*args);
621     }
622     template <size_t I, typename RawTuple, typename... Params>
623     static typename std::enable_if<
624             !ElementIsPointer<I, Params...>::value,
625             typename std::tuple_element<I, std::tuple<Params...>>::type>::type&
626     getForCall(RawTuple* args) {
627         return std::get<I>(*args);
628     }
629 
630     // This template class uses std::index_sequence and parameter pack expansion to call the given
631     // method using the elements of the argument tuple (after those arguments are passed through
632     // getForCall to get addresses instead of values for output arguments)
633     template <typename... Params>
634     struct MethodCaller;
635     template <typename... Params>
636     struct MethodCaller<std::tuple<Params...>> {
637     public:
638         // The calls through these to the helper methods are necessary to generate the
639         // std::index_sequences used to unpack the argument tuple into the method call
640         template <typename Class, typename MemberFunction, typename RawTuple>
641         static status_t call(Class* instance, MemberFunction function, RawTuple* args) {
642             return callHelper(instance, function, args, std::index_sequence_for<Params...>{});
643         }
644         template <typename Class, typename MemberFunction, typename RawTuple>
645         static void callVoid(Class* instance, MemberFunction function, RawTuple* args) {
646             callVoidHelper(instance, function, args, std::index_sequence_for<Params...>{});
647         }
648 
649     private:
650         template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
651         static status_t callHelper(Class* instance, MemberFunction function, RawTuple* args,
652                                    std::index_sequence<I...> /*unused*/) {
653             return (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
654         }
655         template <typename Class, typename MemberFunction, typename RawTuple, std::size_t... I>
656         static void callVoidHelper(Class* instance, MemberFunction function, RawTuple* args,
657                                    std::index_sequence<I...> /*unused*/) {
658             (instance->*function)(getForCall<I, RawTuple, Params...>(args)...);
659         }
660     };
661 
662     // This class iterates over the parameter types, and if a given parameter is an output
663     // (i.e., is a pointer), writes the corresponding argument tuple element into the reply Parcel
664     template <typename... Params>
665     struct OutputWriter;
666     template <typename... Params>
667     struct OutputWriter<std::tuple<Params...>> {
668     public:
669         explicit OutputWriter(const char* logTag) : mLogTag(logTag) {}
670 
671         // See the note on InputReader::readInputs for why this differs from the arguably simpler
672         // RemoveFirst approach in SafeBpInterface
673         template <typename RawTuple>
674         status_t writeOutputs(Parcel* reply, RawTuple* args) {
675             return dispatchArg<0>(reply, args);
676         }
677 
678     private:
679         const char* const mLogTag;
680 
681         template <std::size_t I, typename RawTuple>
682         typename std::enable_if<ElementIsPointer<I, Params...>::value, status_t>::type
683         writeIfOutput(Parcel* reply, RawTuple* args) {
684             return SafeInterface::ParcelHandler{mLogTag}.write(reply, std::get<I>(*args));
685         }
686         template <std::size_t I, typename RawTuple>
687         typename std::enable_if<!ElementIsPointer<I, Params...>::value, status_t>::type
688         writeIfOutput(Parcel* /*reply*/, RawTuple* /*args*/) {
689             return NO_ERROR;
690         }
691 
692         // Recursively iterate through the arguments
693         template <std::size_t I, typename RawTuple>
694         typename std::enable_if<(I < sizeof...(Params)), status_t>::type dispatchArg(
695                 Parcel* reply, RawTuple* args) {
696             status_t error = writeIfOutput<I>(reply, args);
697             if (error != NO_ERROR) [[unlikely]] {
698                 // A message will have been logged in read
699                 return error;
700             }
701             return dispatchArg<I + 1>(reply, args);
702         }
703         template <std::size_t I, typename RawTuple>
704         typename std::enable_if<(I >= sizeof...(Params)), status_t>::type dispatchArg(
705                 Parcel* /*reply*/, RawTuple* /*args*/) {
706             return NO_ERROR;
707         }
708     };
709 };
710 
711 } // namespace android
712