1 /* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_AAUDIO_ISOCHRONOUS_CLOCK_MODEL_H 18 #define ANDROID_AAUDIO_ISOCHRONOUS_CLOCK_MODEL_H 19 20 #include <stdint.h> 21 22 #include <audio_utils/Histogram.h> 23 24 #include "utility/AudioClock.h" 25 26 namespace aaudio { 27 28 /** 29 * Model an isochronous data stream using occasional timestamps as input. 30 * This can be used to predict the position of the stream at a given time. 31 * 32 * This class is not thread safe and should only be called from one thread. 33 */ 34 class IsochronousClockModel { 35 36 public: 37 IsochronousClockModel(); 38 virtual ~IsochronousClockModel() = default; 39 40 void start(int64_t nanoTime); 41 void stop(int64_t nanoTime); 42 43 /** 44 * @return true if the model is starting up 45 */ 46 bool isStarting() const; 47 48 /** 49 * @return true if the model is running and producing valid results 50 */ 51 bool isRunning() const; 52 53 void processTimestamp(int64_t framePosition, int64_t nanoTime); 54 55 /** 56 * @param sampleRate rate of the stream in frames per second 57 */ 58 void setSampleRate(int32_t sampleRate); 59 60 void setPositionAndTime(int64_t framePosition, int64_t nanoTime); 61 getSampleRate()62 int32_t getSampleRate() const { 63 return mSampleRate; 64 } 65 66 /** 67 * This must be set accurately in order to track the isochronous stream. 68 * 69 * @param framesPerBurst number of frames that stream advance at one time. 70 */ 71 void setFramesPerBurst(int32_t framesPerBurst); 72 getFramesPerBurst()73 int32_t getFramesPerBurst() const { 74 return mFramesPerBurst; 75 } 76 77 /** 78 * Calculate an estimated time when the stream will be at that position. 79 * 80 * @param framePosition position of the stream in frames 81 * @return time in nanoseconds 82 */ 83 int64_t convertPositionToTime(int64_t framePosition) const; 84 85 /** 86 * Calculate the latest estimated time that the stream will be at that position. 87 * The more jittery the clock is then the later this will be. 88 * 89 * @param framePosition 90 * @return time in nanoseconds 91 */ 92 int64_t convertPositionToLatestTime(int64_t framePosition) const; 93 94 /** 95 * Calculate an estimated position where the stream will be at the specified time. 96 * 97 * @param nanoTime time of interest 98 * @return position in frames 99 */ 100 int64_t convertTimeToPosition(int64_t nanoTime) const; 101 102 /** 103 * Calculate the corresponding estimated position based on the specified time being 104 * the latest possible time. 105 * 106 * For the same nanoTime, this may return an earlier position than 107 * convertTimeToPosition(). 108 * 109 * @param nanoTime 110 * @return position in frames 111 */ 112 int64_t convertLatestTimeToPosition(int64_t nanoTime) const; 113 114 /** 115 * @param framesDelta difference in frames 116 * @return duration in nanoseconds 117 */ 118 int64_t convertDeltaPositionToTime(int64_t framesDelta) const; 119 120 /** 121 * @param nanosDelta duration in nanoseconds 122 * @return frames that stream will advance in that time 123 */ 124 int64_t convertDeltaTimeToPosition(int64_t nanosDelta) const; 125 126 void dump() const; 127 128 void dumpHistogram() const; 129 130 private: 131 132 void driftForward(int64_t latenessNanos, 133 int64_t expectedNanosDelta, 134 int64_t framePosition); 135 int32_t getLateTimeOffsetNanos() const; 136 void update(); 137 138 enum clock_model_state_t { 139 STATE_STOPPED, 140 STATE_STARTING, 141 STATE_SYNCING, 142 STATE_RUNNING 143 }; 144 145 // Maximum amount of time to drift forward when we get a late timestamp. 146 static constexpr int64_t kMaxDriftNanos = 10 * AAUDIO_NANOS_PER_MICROSECOND; 147 // Safety margin to add to the late edge of the timestamp window. 148 static constexpr int32_t kExtraLatenessNanos = 100 * AAUDIO_NANOS_PER_MICROSECOND; 149 // Predicted lateness due to scheduling jitter in the HAL timestamp collection. 150 static constexpr int32_t kLatenessMarginForSchedulingJitter 151 = 1000 * AAUDIO_NANOS_PER_MICROSECOND; 152 // Amount we multiply mLatenessForDriftNanos to get mLatenessForJumpNanos. 153 // This determines when we go from thinking the clock is drifting to 154 // when it has actually paused briefly. 155 static constexpr int32_t kScalerForJumpLateness = 5; 156 // Amount to divide lateness past the expected burst window to generate 157 // the drift value for the window. This is meant to be a very slight nudge forward. 158 static constexpr int32_t kShifterForDrift = 6; // divide by 2^N 159 static constexpr int32_t kVeryLateCountsNeededToTriggerJump = 2; 160 161 static constexpr int32_t kHistogramBinWidthMicros = 50; 162 static constexpr int32_t kHistogramBinCount = 128; 163 164 int64_t mMarkerFramePosition{0}; // Estimated HW position. 165 int64_t mMarkerNanoTime{0}; // Estimated HW time. 166 int64_t mBurstPeriodNanos{0}; // Time between HW bursts. 167 // Includes mBurstPeriodNanos because we sample randomly over time. 168 int64_t mMaxMeasuredLatenessNanos{0}; 169 // Threshold for lateness that triggers a drift later in time. 170 int64_t mLatenessForDriftNanos{0}; // Set in update() 171 // Based on the observed lateness when the DSP is paused for playing a touch sound. 172 int64_t mLatenessForJumpNanos{0}; // Set in update() 173 int64_t mLastJumpWarningTimeNanos{0}; // For throttling warnings. 174 175 int32_t mSampleRate{48000}; 176 int32_t mFramesPerBurst{48}; // number of frames transferred at one time. 177 int32_t mConsecutiveVeryLateCount{0}; // To detect persistent DSP lateness. 178 179 clock_model_state_t mState{STATE_STOPPED}; // State machine handles startup sequence. 180 181 int32_t mTimestampCount = 0; // For logging. 182 int32_t mDspStallCount = 0; // For logging. 183 184 // distribution of timestamps relative to earliest 185 std::unique_ptr<android::audio_utils::Histogram> mHistogramMicros; 186 187 }; 188 189 } /* namespace aaudio */ 190 191 #endif //ANDROID_AAUDIO_ISOCHRONOUS_CLOCK_MODEL_H 192