1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include "Transpose.h"
20
21 #include <vector>
22
23 #include "OperationResolver.h"
24 #include "Tracing.h"
25
26 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
27 #pragma clang diagnostic push
28 #pragma clang diagnostic ignored "-Wunused-parameter"
29 #pragma clang diagnostic ignored "-Wsign-compare"
30 #pragma clang diagnostic ignored "-Winvalid-partial-specialization"
31 #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
32 #include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
33 #pragma clang diagnostic pop
34
35 #include "CpuOperationUtils.h"
36 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
37
38 namespace android {
39 namespace nn {
40 namespace transpose {
41
42 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
43 namespace {
44
45 template <typename T>
transposeGeneric(const T * inputData,const Shape & inputShape,const int32_t * perm,const Shape & permShape,T * outputData,const Shape & outputShape)46 bool transposeGeneric(const T* inputData, const Shape& inputShape, const int32_t* perm,
47 const Shape& permShape, T* outputData, const Shape& outputShape) {
48 NNTRACE_TRANS("transposeGeneric");
49 // Reverse the permuted axes and convert to 4D due to the way Dims are
50 // constructed.
51 const int32_t kOutputDimensionNum = 4;
52
53 // permData can be NO_VALUE representing a regular 2D matrix transpose
54 int32_t permSize = perm == nullptr ? 2 : static_cast<int32_t>(getSizeOfDimension(permShape, 0));
55 int32_t perm_tmp[2] = {1, 0};
56 if (perm == nullptr) {
57 perm = perm_tmp;
58 }
59 int32_t reversed_perm[kOutputDimensionNum];
60 for (int32_t output_k = 0, input_k = permSize - 1; output_k < permSize; ++output_k, --input_k) {
61 reversed_perm[output_k] = permSize - perm[input_k] - 1;
62 }
63 for (int32_t k = permSize; k < kOutputDimensionNum; ++k) {
64 reversed_perm[k] = k;
65 }
66 NNTRACE_COMP_SWITCH("reference_ops::Transpose");
67 tflite::reference_ops::Transpose(inputData, convertShapeToDims(inputShape), outputData,
68 convertShapeToDims(outputShape), reversed_perm);
69 return true;
70 }
71
72 } // namespace
73
prepare(IOperationExecutionContext * context)74 bool prepare(IOperationExecutionContext* context) {
75 // Only the permutation tensor can be omitted.
76 NN_RET_CHECK(!context->isOmittedInput(kInputTensor));
77 NN_RET_CHECK(!context->isOmittedOutput(kOutputTensor));
78
79 const Shape& input = context->getInputShape(kInputTensor);
80 uint32_t numInputDims = getNumberOfDimensions(input);
81 Shape output = context->getOutputShape(kOutputTensor);
82 output.type = input.type;
83 output.offset = input.offset;
84 output.scale = input.scale;
85
86 // permData can be NO_VALUE representing a regular 2D matrix transpose
87 if (context->isOmittedInput(kPermTensor)) {
88 NN_RET_CHECK_EQ(numInputDims, 2u);
89 output.dimensions = {getSizeOfDimension(input, 1), getSizeOfDimension(input, 0)};
90 } else {
91 const Shape& permShape = context->getInputShape(kPermTensor);
92 const int32_t* permData = context->getInputBuffer<int32_t>(kPermTensor);
93
94 // Transpose op only supports 1D-4D input arrays.
95 NN_RET_CHECK_LE(numInputDims, 4u);
96
97 // perm need to be provided as a 1-D int32 tensor.
98 NN_RET_CHECK(permShape.type == OperandType::TENSOR_INT32);
99 NN_RET_CHECK_EQ(getNumberOfDimensions(permShape), 1u);
100 NN_RET_CHECK_EQ(numInputDims, getSizeOfDimension(permShape, 0));
101
102 std::vector<uint32_t> outDims(numInputDims);
103 for (int32_t idx = 0; idx < static_cast<int32_t>(numInputDims); ++idx) {
104 NN_RET_CHECK(permData[idx] >= 0 && permData[idx] < static_cast<int32_t>(numInputDims));
105 outDims[idx] = getSizeOfDimension(input, permData[idx]);
106 }
107 output.dimensions = outDims;
108 }
109 return context->setOutputShape(kOutputTensor, output);
110 }
111
execute(IOperationExecutionContext * context)112 bool execute(IOperationExecutionContext* context) {
113 // Bypass execution in the case of zero-sized input.
114 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
115
116 switch (context->getInputType(kInputTensor)) {
117 case OperandType::TENSOR_FLOAT32:
118 return transposeGeneric(context->getInputBuffer<float>(kInputTensor),
119 context->getInputShape(kInputTensor),
120 context->getInputBuffer<int32_t>(kPermTensor),
121 context->getInputShape(kPermTensor),
122 context->getOutputBuffer<float>(kOutputTensor),
123 context->getOutputShape(kOutputTensor));
124 case OperandType::TENSOR_FLOAT16:
125 return transposeGeneric(context->getInputBuffer<_Float16>(kInputTensor),
126 context->getInputShape(kInputTensor),
127 context->getInputBuffer<int32_t>(kPermTensor),
128 context->getInputShape(kPermTensor),
129 context->getOutputBuffer<_Float16>(kOutputTensor),
130 context->getOutputShape(kOutputTensor));
131 case OperandType::TENSOR_QUANT8_ASYMM:
132 return transposeGeneric(context->getInputBuffer<uint8_t>(kInputTensor),
133 context->getInputShape(kInputTensor),
134 context->getInputBuffer<int32_t>(kPermTensor),
135 context->getInputShape(kPermTensor),
136 context->getOutputBuffer<uint8_t>(kOutputTensor),
137 context->getOutputShape(kOutputTensor));
138 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
139 return transposeGeneric(context->getInputBuffer<int8_t>(kInputTensor),
140 context->getInputShape(kInputTensor),
141 context->getInputBuffer<int32_t>(kPermTensor),
142 context->getInputShape(kPermTensor),
143 context->getOutputBuffer<int8_t>(kOutputTensor),
144 context->getOutputShape(kOutputTensor));
145 default:
146 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
147 }
148 }
149 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
150
151 } // namespace transpose
152
153 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(TRANSPOSE, transpose::prepare, transpose::execute,
154 .allowOmittedOperand = true, .allowZeroSizedInput = true);
155
156 } // namespace nn
157 } // namespace android
158