1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.io.ObjectStreamField;
39 import java.io.Serializable;
40 import java.lang.reflect.ParameterizedType;
41 import java.lang.reflect.Type;
42 import java.util.AbstractMap;
43 import java.util.Arrays;
44 import java.util.Collection;
45 import java.util.Enumeration;
46 import java.util.HashMap;
47 import java.util.Hashtable;
48 import java.util.Iterator;
49 import java.util.Map;
50 import java.util.NoSuchElementException;
51 import java.util.Set;
52 import java.util.Spliterator;
53 import java.util.concurrent.atomic.AtomicReference;
54 import java.util.concurrent.locks.LockSupport;
55 import java.util.concurrent.locks.ReentrantLock;
56 import java.util.function.BiConsumer;
57 import java.util.function.BiFunction;
58 import java.util.function.Consumer;
59 import java.util.function.DoubleBinaryOperator;
60 import java.util.function.Function;
61 import java.util.function.IntBinaryOperator;
62 import java.util.function.LongBinaryOperator;
63 import java.util.function.Predicate;
64 import java.util.function.ToDoubleBiFunction;
65 import java.util.function.ToDoubleFunction;
66 import java.util.function.ToIntBiFunction;
67 import java.util.function.ToIntFunction;
68 import java.util.function.ToLongBiFunction;
69 import java.util.function.ToLongFunction;
70 import java.util.stream.Stream;
71 import jdk.internal.misc.Unsafe;
72 
73 /**
74  * A hash table supporting full concurrency of retrievals and
75  * high expected concurrency for updates. This class obeys the
76  * same functional specification as {@link java.util.Hashtable}, and
77  * includes versions of methods corresponding to each method of
78  * {@code Hashtable}. However, even though all operations are
79  * thread-safe, retrieval operations do <em>not</em> entail locking,
80  * and there is <em>not</em> any support for locking the entire table
81  * in a way that prevents all access.  This class is fully
82  * interoperable with {@code Hashtable} in programs that rely on its
83  * thread safety but not on its synchronization details.
84  *
85  * <p>Retrieval operations (including {@code get}) generally do not
86  * block, so may overlap with update operations (including {@code put}
87  * and {@code remove}). Retrievals reflect the results of the most
88  * recently <em>completed</em> update operations holding upon their
89  * onset. (More formally, an update operation for a given key bears a
90  * <em>happens-before</em> relation with any (non-null) retrieval for
91  * that key reporting the updated value.)  For aggregate operations
92  * such as {@code putAll} and {@code clear}, concurrent retrievals may
93  * reflect insertion or removal of only some entries.  Similarly,
94  * Iterators, Spliterators and Enumerations return elements reflecting the
95  * state of the hash table at some point at or since the creation of the
96  * iterator/enumeration.  They do <em>not</em> throw {@link
97  * java.util.ConcurrentModificationException ConcurrentModificationException}.
98  * However, iterators are designed to be used by only one thread at a time.
99  * Bear in mind that the results of aggregate status methods including
100  * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
101  * useful only when a map is not undergoing concurrent updates in other threads.
102  * Otherwise the results of these methods reflect transient states
103  * that may be adequate for monitoring or estimation purposes, but not
104  * for program control.
105  *
106  * <p>The table is dynamically expanded when there are too many
107  * collisions (i.e., keys that have distinct hash codes but fall into
108  * the same slot modulo the table size), with the expected average
109  * effect of maintaining roughly two bins per mapping (corresponding
110  * to a 0.75 load factor threshold for resizing). There may be much
111  * variance around this average as mappings are added and removed, but
112  * overall, this maintains a commonly accepted time/space tradeoff for
113  * hash tables.  However, resizing this or any other kind of hash
114  * table may be a relatively slow operation. When possible, it is a
115  * good idea to provide a size estimate as an optional {@code
116  * initialCapacity} constructor argument. An additional optional
117  * {@code loadFactor} constructor argument provides a further means of
118  * customizing initial table capacity by specifying the table density
119  * to be used in calculating the amount of space to allocate for the
120  * given number of elements.  Also, for compatibility with previous
121  * versions of this class, constructors may optionally specify an
122  * expected {@code concurrencyLevel} as an additional hint for
123  * internal sizing.  Note that using many keys with exactly the same
124  * {@code hashCode()} is a sure way to slow down performance of any
125  * hash table. To ameliorate impact, when keys are {@link Comparable},
126  * this class may use comparison order among keys to help break ties.
127  *
128  * <p>A {@link Set} projection of a ConcurrentHashMap may be created
129  * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
130  * (using {@link #keySet(Object)} when only keys are of interest, and the
131  * mapped values are (perhaps transiently) not used or all take the
132  * same mapping value.
133  *
134  * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
135  * form of histogram or multiset) by using {@link
136  * java.util.concurrent.atomic.LongAdder} values and initializing via
137  * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
138  * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
139  * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
140  *
141  * <p>This class and its views and iterators implement all of the
142  * <em>optional</em> methods of the {@link Map} and {@link Iterator}
143  * interfaces.
144  *
145  * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
146  * does <em>not</em> allow {@code null} to be used as a key or value.
147  *
148  * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
149  * operations that, unlike most {@link Stream} methods, are designed
150  * to be safely, and often sensibly, applied even with maps that are
151  * being concurrently updated by other threads; for example, when
152  * computing a snapshot summary of the values in a shared registry.
153  * There are three kinds of operation, each with four forms, accepting
154  * functions with keys, values, entries, and (key, value) pairs as
155  * arguments and/or return values. Because the elements of a
156  * ConcurrentHashMap are not ordered in any particular way, and may be
157  * processed in different orders in different parallel executions, the
158  * correctness of supplied functions should not depend on any
159  * ordering, or on any other objects or values that may transiently
160  * change while computation is in progress; and except for forEach
161  * actions, should ideally be side-effect-free. Bulk operations on
162  * {@link Map.Entry} objects do not support method {@code setValue}.
163  *
164  * <ul>
165  * <li>forEach: Performs a given action on each element.
166  * A variant form applies a given transformation on each element
167  * before performing the action.
168  *
169  * <li>search: Returns the first available non-null result of
170  * applying a given function on each element; skipping further
171  * search when a result is found.
172  *
173  * <li>reduce: Accumulates each element.  The supplied reduction
174  * function cannot rely on ordering (more formally, it should be
175  * both associative and commutative).  There are five variants:
176  *
177  * <ul>
178  *
179  * <li>Plain reductions. (There is not a form of this method for
180  * (key, value) function arguments since there is no corresponding
181  * return type.)
182  *
183  * <li>Mapped reductions that accumulate the results of a given
184  * function applied to each element.
185  *
186  * <li>Reductions to scalar doubles, longs, and ints, using a
187  * given basis value.
188  *
189  * </ul>
190  * </ul>
191  *
192  * <p>These bulk operations accept a {@code parallelismThreshold}
193  * argument. Methods proceed sequentially if the current map size is
194  * estimated to be less than the given threshold. Using a value of
195  * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
196  * of {@code 1} results in maximal parallelism by partitioning into
197  * enough subtasks to fully utilize the {@link
198  * ForkJoinPool#commonPool()} that is used for all parallel
199  * computations. Normally, you would initially choose one of these
200  * extreme values, and then measure performance of using in-between
201  * values that trade off overhead versus throughput.
202  *
203  * <p>The concurrency properties of bulk operations follow
204  * from those of ConcurrentHashMap: Any non-null result returned
205  * from {@code get(key)} and related access methods bears a
206  * happens-before relation with the associated insertion or
207  * update.  The result of any bulk operation reflects the
208  * composition of these per-element relations (but is not
209  * necessarily atomic with respect to the map as a whole unless it
210  * is somehow known to be quiescent).  Conversely, because keys
211  * and values in the map are never null, null serves as a reliable
212  * atomic indicator of the current lack of any result.  To
213  * maintain this property, null serves as an implicit basis for
214  * all non-scalar reduction operations. For the double, long, and
215  * int versions, the basis should be one that, when combined with
216  * any other value, returns that other value (more formally, it
217  * should be the identity element for the reduction). Most common
218  * reductions have these properties; for example, computing a sum
219  * with basis 0 or a minimum with basis MAX_VALUE.
220  *
221  * <p>Search and transformation functions provided as arguments
222  * should similarly return null to indicate the lack of any result
223  * (in which case it is not used). In the case of mapped
224  * reductions, this also enables transformations to serve as
225  * filters, returning null (or, in the case of primitive
226  * specializations, the identity basis) if the element should not
227  * be combined. You can create compound transformations and
228  * filterings by composing them yourself under this "null means
229  * there is nothing there now" rule before using them in search or
230  * reduce operations.
231  *
232  * <p>Methods accepting and/or returning Entry arguments maintain
233  * key-value associations. They may be useful for example when
234  * finding the key for the greatest value. Note that "plain" Entry
235  * arguments can be supplied using {@code new
236  * AbstractMap.SimpleEntry(k,v)}.
237  *
238  * <p>Bulk operations may complete abruptly, throwing an
239  * exception encountered in the application of a supplied
240  * function. Bear in mind when handling such exceptions that other
241  * concurrently executing functions could also have thrown
242  * exceptions, or would have done so if the first exception had
243  * not occurred.
244  *
245  * <p>Speedups for parallel compared to sequential forms are common
246  * but not guaranteed.  Parallel operations involving brief functions
247  * on small maps may execute more slowly than sequential forms if the
248  * underlying work to parallelize the computation is more expensive
249  * than the computation itself.  Similarly, parallelization may not
250  * lead to much actual parallelism if all processors are busy
251  * performing unrelated tasks.
252  *
253  * <p>All arguments to all task methods must be non-null.
254  *
255  * <p>This class is a member of the
256  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
257  * Java Collections Framework</a>.
258  *
259  * @since 1.5
260  * @author Doug Lea
261  * @param <K> the type of keys maintained by this map
262  * @param <V> the type of mapped values
263  */
264 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
265     implements ConcurrentMap<K,V>, Serializable {
266     private static final long serialVersionUID = 7249069246763182397L;
267 
268     /*
269      * Overview:
270      *
271      * The primary design goal of this hash table is to maintain
272      * concurrent readability (typically method get(), but also
273      * iterators and related methods) while minimizing update
274      * contention. Secondary goals are to keep space consumption about
275      * the same or better than java.util.HashMap, and to support high
276      * initial insertion rates on an empty table by many threads.
277      *
278      * This map usually acts as a binned (bucketed) hash table.  Each
279      * key-value mapping is held in a Node.  Most nodes are instances
280      * of the basic Node class with hash, key, value, and next
281      * fields. However, various subclasses exist: TreeNodes are
282      * arranged in balanced trees, not lists.  TreeBins hold the roots
283      * of sets of TreeNodes. ForwardingNodes are placed at the heads
284      * of bins during resizing. ReservationNodes are used as
285      * placeholders while establishing values in computeIfAbsent and
286      * related methods.  The types TreeBin, ForwardingNode, and
287      * ReservationNode do not hold normal user keys, values, or
288      * hashes, and are readily distinguishable during search etc
289      * because they have negative hash fields and null key and value
290      * fields. (These special nodes are either uncommon or transient,
291      * so the impact of carrying around some unused fields is
292      * insignificant.)
293      *
294      * The table is lazily initialized to a power-of-two size upon the
295      * first insertion.  Each bin in the table normally contains a
296      * list of Nodes (most often, the list has only zero or one Node).
297      * Table accesses require volatile/atomic reads, writes, and
298      * CASes.  Because there is no other way to arrange this without
299      * adding further indirections, we use intrinsics
300      * (jdk.internal.misc.Unsafe) operations.
301      *
302      * We use the top (sign) bit of Node hash fields for control
303      * purposes -- it is available anyway because of addressing
304      * constraints.  Nodes with negative hash fields are specially
305      * handled or ignored in map methods.
306      *
307      * Insertion (via put or its variants) of the first node in an
308      * empty bin is performed by just CASing it to the bin.  This is
309      * by far the most common case for put operations under most
310      * key/hash distributions.  Other update operations (insert,
311      * delete, and replace) require locks.  We do not want to waste
312      * the space required to associate a distinct lock object with
313      * each bin, so instead use the first node of a bin list itself as
314      * a lock. Locking support for these locks relies on builtin
315      * "synchronized" monitors.
316      *
317      * Using the first node of a list as a lock does not by itself
318      * suffice though: When a node is locked, any update must first
319      * validate that it is still the first node after locking it, and
320      * retry if not. Because new nodes are always appended to lists,
321      * once a node is first in a bin, it remains first until deleted
322      * or the bin becomes invalidated (upon resizing).
323      *
324      * The main disadvantage of per-bin locks is that other update
325      * operations on other nodes in a bin list protected by the same
326      * lock can stall, for example when user equals() or mapping
327      * functions take a long time.  However, statistically, under
328      * random hash codes, this is not a common problem.  Ideally, the
329      * frequency of nodes in bins follows a Poisson distribution
330      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
331      * parameter of about 0.5 on average, given the resizing threshold
332      * of 0.75, although with a large variance because of resizing
333      * granularity. Ignoring variance, the expected occurrences of
334      * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
335      * first values are:
336      *
337      * 0:    0.60653066
338      * 1:    0.30326533
339      * 2:    0.07581633
340      * 3:    0.01263606
341      * 4:    0.00157952
342      * 5:    0.00015795
343      * 6:    0.00001316
344      * 7:    0.00000094
345      * 8:    0.00000006
346      * more: less than 1 in ten million
347      *
348      * Lock contention probability for two threads accessing distinct
349      * elements is roughly 1 / (8 * #elements) under random hashes.
350      *
351      * Actual hash code distributions encountered in practice
352      * sometimes deviate significantly from uniform randomness.  This
353      * includes the case when N > (1<<30), so some keys MUST collide.
354      * Similarly for dumb or hostile usages in which multiple keys are
355      * designed to have identical hash codes or ones that differs only
356      * in masked-out high bits. So we use a secondary strategy that
357      * applies when the number of nodes in a bin exceeds a
358      * threshold. These TreeBins use a balanced tree to hold nodes (a
359      * specialized form of red-black trees), bounding search time to
360      * O(log N).  Each search step in a TreeBin is at least twice as
361      * slow as in a regular list, but given that N cannot exceed
362      * (1<<64) (before running out of addresses) this bounds search
363      * steps, lock hold times, etc, to reasonable constants (roughly
364      * 100 nodes inspected per operation worst case) so long as keys
365      * are Comparable (which is very common -- String, Long, etc).
366      * TreeBin nodes (TreeNodes) also maintain the same "next"
367      * traversal pointers as regular nodes, so can be traversed in
368      * iterators in the same way.
369      *
370      * The table is resized when occupancy exceeds a percentage
371      * threshold (nominally, 0.75, but see below).  Any thread
372      * noticing an overfull bin may assist in resizing after the
373      * initiating thread allocates and sets up the replacement array.
374      * However, rather than stalling, these other threads may proceed
375      * with insertions etc.  The use of TreeBins shields us from the
376      * worst case effects of overfilling while resizes are in
377      * progress.  Resizing proceeds by transferring bins, one by one,
378      * from the table to the next table. However, threads claim small
379      * blocks of indices to transfer (via field transferIndex) before
380      * doing so, reducing contention.  A generation stamp in field
381      * sizeCtl ensures that resizings do not overlap. Because we are
382      * using power-of-two expansion, the elements from each bin must
383      * either stay at same index, or move with a power of two
384      * offset. We eliminate unnecessary node creation by catching
385      * cases where old nodes can be reused because their next fields
386      * won't change.  On average, only about one-sixth of them need
387      * cloning when a table doubles. The nodes they replace will be
388      * garbage collectible as soon as they are no longer referenced by
389      * any reader thread that may be in the midst of concurrently
390      * traversing table.  Upon transfer, the old table bin contains
391      * only a special forwarding node (with hash field "MOVED") that
392      * contains the next table as its key. On encountering a
393      * forwarding node, access and update operations restart, using
394      * the new table.
395      *
396      * Each bin transfer requires its bin lock, which can stall
397      * waiting for locks while resizing. However, because other
398      * threads can join in and help resize rather than contend for
399      * locks, average aggregate waits become shorter as resizing
400      * progresses.  The transfer operation must also ensure that all
401      * accessible bins in both the old and new table are usable by any
402      * traversal.  This is arranged in part by proceeding from the
403      * last bin (table.length - 1) up towards the first.  Upon seeing
404      * a forwarding node, traversals (see class Traverser) arrange to
405      * move to the new table without revisiting nodes.  To ensure that
406      * no intervening nodes are skipped even when moved out of order,
407      * a stack (see class TableStack) is created on first encounter of
408      * a forwarding node during a traversal, to maintain its place if
409      * later processing the current table. The need for these
410      * save/restore mechanics is relatively rare, but when one
411      * forwarding node is encountered, typically many more will be.
412      * So Traversers use a simple caching scheme to avoid creating so
413      * many new TableStack nodes. (Thanks to Peter Levart for
414      * suggesting use of a stack here.)
415      *
416      * The traversal scheme also applies to partial traversals of
417      * ranges of bins (via an alternate Traverser constructor)
418      * to support partitioned aggregate operations.  Also, read-only
419      * operations give up if ever forwarded to a null table, which
420      * provides support for shutdown-style clearing, which is also not
421      * currently implemented.
422      *
423      * Lazy table initialization minimizes footprint until first use,
424      * and also avoids resizings when the first operation is from a
425      * putAll, constructor with map argument, or deserialization.
426      * These cases attempt to override the initial capacity settings,
427      * but harmlessly fail to take effect in cases of races.
428      *
429      * The element count is maintained using a specialization of
430      * LongAdder. We need to incorporate a specialization rather than
431      * just use a LongAdder in order to access implicit
432      * contention-sensing that leads to creation of multiple
433      * CounterCells.  The counter mechanics avoid contention on
434      * updates but can encounter cache thrashing if read too
435      * frequently during concurrent access. To avoid reading so often,
436      * resizing under contention is attempted only upon adding to a
437      * bin already holding two or more nodes. Under uniform hash
438      * distributions, the probability of this occurring at threshold
439      * is around 13%, meaning that only about 1 in 8 puts check
440      * threshold (and after resizing, many fewer do so).
441      *
442      * TreeBins use a special form of comparison for search and
443      * related operations (which is the main reason we cannot use
444      * existing collections such as TreeMaps). TreeBins contain
445      * Comparable elements, but may contain others, as well as
446      * elements that are Comparable but not necessarily Comparable for
447      * the same T, so we cannot invoke compareTo among them. To handle
448      * this, the tree is ordered primarily by hash value, then by
449      * Comparable.compareTo order if applicable.  On lookup at a node,
450      * if elements are not comparable or compare as 0 then both left
451      * and right children may need to be searched in the case of tied
452      * hash values. (This corresponds to the full list search that
453      * would be necessary if all elements were non-Comparable and had
454      * tied hashes.) On insertion, to keep a total ordering (or as
455      * close as is required here) across rebalancings, we compare
456      * classes and identityHashCodes as tie-breakers. The red-black
457      * balancing code is updated from pre-jdk-collections
458      * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
459      * based in turn on Cormen, Leiserson, and Rivest "Introduction to
460      * Algorithms" (CLR).
461      *
462      * TreeBins also require an additional locking mechanism.  While
463      * list traversal is always possible by readers even during
464      * updates, tree traversal is not, mainly because of tree-rotations
465      * that may change the root node and/or its linkages.  TreeBins
466      * include a simple read-write lock mechanism parasitic on the
467      * main bin-synchronization strategy: Structural adjustments
468      * associated with an insertion or removal are already bin-locked
469      * (and so cannot conflict with other writers) but must wait for
470      * ongoing readers to finish. Since there can be only one such
471      * waiter, we use a simple scheme using a single "waiter" field to
472      * block writers.  However, readers need never block.  If the root
473      * lock is held, they proceed along the slow traversal path (via
474      * next-pointers) until the lock becomes available or the list is
475      * exhausted, whichever comes first. These cases are not fast, but
476      * maximize aggregate expected throughput.
477      *
478      * Maintaining API and serialization compatibility with previous
479      * versions of this class introduces several oddities. Mainly: We
480      * leave untouched but unused constructor arguments referring to
481      * concurrencyLevel. We accept a loadFactor constructor argument,
482      * but apply it only to initial table capacity (which is the only
483      * time that we can guarantee to honor it.) We also declare an
484      * unused "Segment" class that is instantiated in minimal form
485      * only when serializing.
486      *
487      * Also, solely for compatibility with previous versions of this
488      * class, it extends AbstractMap, even though all of its methods
489      * are overridden, so it is just useless baggage.
490      *
491      * This file is organized to make things a little easier to follow
492      * while reading than they might otherwise: First the main static
493      * declarations and utilities, then fields, then main public
494      * methods (with a few factorings of multiple public methods into
495      * internal ones), then sizing methods, trees, traversers, and
496      * bulk operations.
497      */
498 
499     /* ---------------- Constants -------------- */
500 
501     /**
502      * The largest possible table capacity.  This value must be
503      * exactly 1<<30 to stay within Java array allocation and indexing
504      * bounds for power of two table sizes, and is further required
505      * because the top two bits of 32bit hash fields are used for
506      * control purposes.
507      */
508     private static final int MAXIMUM_CAPACITY = 1 << 30;
509 
510     /**
511      * The default initial table capacity.  Must be a power of 2
512      * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
513      */
514     private static final int DEFAULT_CAPACITY = 16;
515 
516     /**
517      * The largest possible (non-power of two) array size.
518      * Needed by toArray and related methods.
519      */
520     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
521 
522     /**
523      * The default concurrency level for this table. Unused but
524      * defined for compatibility with previous versions of this class.
525      */
526     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
527 
528     /**
529      * The load factor for this table. Overrides of this value in
530      * constructors affect only the initial table capacity.  The
531      * actual floating point value isn't normally used -- it is
532      * simpler to use expressions such as {@code n - (n >>> 2)} for
533      * the associated resizing threshold.
534      */
535     private static final float LOAD_FACTOR = 0.75f;
536 
537     /**
538      * The bin count threshold for using a tree rather than list for a
539      * bin.  Bins are converted to trees when adding an element to a
540      * bin with at least this many nodes. The value must be greater
541      * than 2, and should be at least 8 to mesh with assumptions in
542      * tree removal about conversion back to plain bins upon
543      * shrinkage.
544      */
545     static final int TREEIFY_THRESHOLD = 8;
546 
547     /**
548      * The bin count threshold for untreeifying a (split) bin during a
549      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
550      * most 6 to mesh with shrinkage detection under removal.
551      */
552     static final int UNTREEIFY_THRESHOLD = 6;
553 
554     /**
555      * The smallest table capacity for which bins may be treeified.
556      * (Otherwise the table is resized if too many nodes in a bin.)
557      * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
558      * conflicts between resizing and treeification thresholds.
559      */
560     static final int MIN_TREEIFY_CAPACITY = 64;
561 
562     /**
563      * Minimum number of rebinnings per transfer step. Ranges are
564      * subdivided to allow multiple resizer threads.  This value
565      * serves as a lower bound to avoid resizers encountering
566      * excessive memory contention.  The value should be at least
567      * DEFAULT_CAPACITY.
568      */
569     private static final int MIN_TRANSFER_STRIDE = 16;
570 
571     /**
572      * The number of bits used for generation stamp in sizeCtl.
573      * Must be at least 6 for 32bit arrays.
574      */
575     private static final int RESIZE_STAMP_BITS = 16;
576 
577     /**
578      * The maximum number of threads that can help resize.
579      * Must fit in 32 - RESIZE_STAMP_BITS bits.
580      */
581     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
582 
583     /**
584      * The bit shift for recording size stamp in sizeCtl.
585      */
586     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
587 
588     /*
589      * Encodings for Node hash fields. See above for explanation.
590      */
591     static final int MOVED     = -1; // hash for forwarding nodes
592     static final int TREEBIN   = -2; // hash for roots of trees
593     static final int RESERVED  = -3; // hash for transient reservations
594     static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
595 
596     /** Number of CPUS, to place bounds on some sizings */
597     static final int NCPU = Runtime.getRuntime().availableProcessors();
598 
599     /**
600      * Serialized pseudo-fields, provided only for jdk7 compatibility.
601      * @serialField segments Segment[]
602      *   The segments, each of which is a specialized hash table.
603      * @serialField segmentMask int
604      *   Mask value for indexing into segments. The upper bits of a
605      *   key's hash code are used to choose the segment.
606      * @serialField segmentShift int
607      *   Shift value for indexing within segments.
608      */
609     private static final ObjectStreamField[] serialPersistentFields = {
610         new ObjectStreamField("segments", Segment[].class),
611         new ObjectStreamField("segmentMask", Integer.TYPE),
612         new ObjectStreamField("segmentShift", Integer.TYPE),
613     };
614 
615     /* ---------------- Nodes -------------- */
616 
617     /**
618      * Key-value entry.  This class is never exported out as a
619      * user-mutable Map.Entry (i.e., one supporting setValue; see
620      * MapEntry below), but can be used for read-only traversals used
621      * in bulk tasks.  Subclasses of Node with a negative hash field
622      * are special, and contain null keys and values (but are never
623      * exported).  Otherwise, keys and vals are never null.
624      */
625     static class Node<K,V> implements Map.Entry<K,V> {
626         final int hash;
627         final K key;
628         volatile V val;
629         volatile Node<K,V> next;
630 
Node(int hash, K key, V val)631         Node(int hash, K key, V val) {
632             this.hash = hash;
633             this.key = key;
634             this.val = val;
635         }
636 
Node(int hash, K key, V val, Node<K,V> next)637         Node(int hash, K key, V val, Node<K,V> next) {
638             this(hash, key, val);
639             this.next = next;
640         }
641 
getKey()642         public final K getKey()     { return key; }
getValue()643         public final V getValue()   { return val; }
hashCode()644         public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
toString()645         public final String toString() {
646             return Helpers.mapEntryToString(key, val);
647         }
setValue(V value)648         public final V setValue(V value) {
649             throw new UnsupportedOperationException();
650         }
651 
equals(Object o)652         public final boolean equals(Object o) {
653             Object k, v, u; Map.Entry<?,?> e;
654             return ((o instanceof Map.Entry) &&
655                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
656                     (v = e.getValue()) != null &&
657                     (k == key || k.equals(key)) &&
658                     (v == (u = val) || v.equals(u)));
659         }
660 
661         /**
662          * Virtualized support for map.get(); overridden in subclasses.
663          */
find(int h, Object k)664         Node<K,V> find(int h, Object k) {
665             Node<K,V> e = this;
666             if (k != null) {
667                 do {
668                     K ek;
669                     if (e.hash == h &&
670                         ((ek = e.key) == k || (ek != null && k.equals(ek))))
671                         return e;
672                 } while ((e = e.next) != null);
673             }
674             return null;
675         }
676     }
677 
678     /* ---------------- Static utilities -------------- */
679 
680     /**
681      * Spreads (XORs) higher bits of hash to lower and also forces top
682      * bit to 0. Because the table uses power-of-two masking, sets of
683      * hashes that vary only in bits above the current mask will
684      * always collide. (Among known examples are sets of Float keys
685      * holding consecutive whole numbers in small tables.)  So we
686      * apply a transform that spreads the impact of higher bits
687      * downward. There is a tradeoff between speed, utility, and
688      * quality of bit-spreading. Because many common sets of hashes
689      * are already reasonably distributed (so don't benefit from
690      * spreading), and because we use trees to handle large sets of
691      * collisions in bins, we just XOR some shifted bits in the
692      * cheapest possible way to reduce systematic lossage, as well as
693      * to incorporate impact of the highest bits that would otherwise
694      * never be used in index calculations because of table bounds.
695      */
spread(int h)696     static final int spread(int h) {
697         return (h ^ (h >>> 16)) & HASH_BITS;
698     }
699 
700     /**
701      * Returns a power of two table size for the given desired capacity.
702      * See Hackers Delight, sec 3.2
703      */
tableSizeFor(int c)704     private static final int tableSizeFor(int c) {
705         int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
706         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
707     }
708 
709     /**
710      * Returns x's Class if it is of the form "class C implements
711      * Comparable<C>", else null.
712      */
comparableClassFor(Object x)713     static Class<?> comparableClassFor(Object x) {
714         if (x instanceof Comparable) {
715             Class<?> c; Type[] ts, as; ParameterizedType p;
716             if ((c = x.getClass()) == String.class) // bypass checks
717                 return c;
718             if ((ts = c.getGenericInterfaces()) != null) {
719                 for (Type t : ts) {
720                     if ((t instanceof ParameterizedType) &&
721                         ((p = (ParameterizedType)t).getRawType() ==
722                          Comparable.class) &&
723                         (as = p.getActualTypeArguments()) != null &&
724                         as.length == 1 && as[0] == c) // type arg is c
725                         return c;
726                 }
727             }
728         }
729         return null;
730     }
731 
732     /**
733      * Returns k.compareTo(x) if x matches kc (k's screened comparable
734      * class), else 0.
735      */
736     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
compareComparables(Class<?> kc, Object k, Object x)737     static int compareComparables(Class<?> kc, Object k, Object x) {
738         return (x == null || x.getClass() != kc ? 0 :
739                 ((Comparable)k).compareTo(x));
740     }
741 
742     /* ---------------- Table element access -------------- */
743 
744     /*
745      * Atomic access methods are used for table elements as well as
746      * elements of in-progress next table while resizing.  All uses of
747      * the tab arguments must be null checked by callers.  All callers
748      * also paranoically precheck that tab's length is not zero (or an
749      * equivalent check), thus ensuring that any index argument taking
750      * the form of a hash value anded with (length - 1) is a valid
751      * index.  Note that, to be correct wrt arbitrary concurrency
752      * errors by users, these checks must operate on local variables,
753      * which accounts for some odd-looking inline assignments below.
754      * Note that calls to setTabAt always occur within locked regions,
755      * and so require only release ordering.
756      */
757 
758     @SuppressWarnings("unchecked")
tabAt(Node<K,V>[] tab, int i)759     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
760         return (Node<K,V>)U.getReferenceAcquire(tab, ((long)i << ASHIFT) + ABASE);
761     }
762 
casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)763     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
764                                         Node<K,V> c, Node<K,V> v) {
765         return U.compareAndSetReference(tab, ((long)i << ASHIFT) + ABASE, c, v);
766     }
767 
setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)768     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
769         U.putReferenceRelease(tab, ((long)i << ASHIFT) + ABASE, v);
770     }
771 
772     /* ---------------- Fields -------------- */
773 
774     /**
775      * The array of bins. Lazily initialized upon first insertion.
776      * Size is always a power of two. Accessed directly by iterators.
777      */
778     transient volatile Node<K,V>[] table;
779 
780     /**
781      * The next table to use; non-null only while resizing.
782      */
783     private transient volatile Node<K,V>[] nextTable;
784 
785     /**
786      * Base counter value, used mainly when there is no contention,
787      * but also as a fallback during table initialization
788      * races. Updated via CAS.
789      */
790     private transient volatile long baseCount;
791 
792     /**
793      * Table initialization and resizing control.  When negative, the
794      * table is being initialized or resized: -1 for initialization,
795      * else -(1 + the number of active resizing threads).  Otherwise,
796      * when table is null, holds the initial table size to use upon
797      * creation, or 0 for default. After initialization, holds the
798      * next element count value upon which to resize the table.
799      */
800     private transient volatile int sizeCtl;
801 
802     /**
803      * The next table index (plus one) to split while resizing.
804      */
805     private transient volatile int transferIndex;
806 
807     /**
808      * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
809      */
810     private transient volatile int cellsBusy;
811 
812     /**
813      * Table of counter cells. When non-null, size is a power of 2.
814      */
815     private transient volatile CounterCell[] counterCells;
816 
817     // views
818     private transient KeySetView<K,V> keySet;
819     private transient ValuesView<K,V> values;
820     private transient EntrySetView<K,V> entrySet;
821 
822 
823     /* ---------------- Public operations -------------- */
824 
825     /**
826      * Creates a new, empty map with the default initial table size (16).
827      */
ConcurrentHashMap()828     public ConcurrentHashMap() {
829     }
830 
831     /**
832      * Creates a new, empty map with an initial table size
833      * accommodating the specified number of elements without the need
834      * to dynamically resize.
835      *
836      * @param initialCapacity The implementation performs internal
837      * sizing to accommodate this many elements.
838      * @throws IllegalArgumentException if the initial capacity of
839      * elements is negative
840      */
ConcurrentHashMap(int initialCapacity)841     public ConcurrentHashMap(int initialCapacity) {
842         this(initialCapacity, LOAD_FACTOR, 1);
843     }
844 
845     /**
846      * Creates a new map with the same mappings as the given map.
847      *
848      * @param m the map
849      */
ConcurrentHashMap(Map<? extends K, ? extends V> m)850     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
851         this.sizeCtl = DEFAULT_CAPACITY;
852         putAll(m);
853     }
854 
855     /**
856      * Creates a new, empty map with an initial table size based on
857      * the given number of elements ({@code initialCapacity}) and
858      * initial table density ({@code loadFactor}).
859      *
860      * @param initialCapacity the initial capacity. The implementation
861      * performs internal sizing to accommodate this many elements,
862      * given the specified load factor.
863      * @param loadFactor the load factor (table density) for
864      * establishing the initial table size
865      * @throws IllegalArgumentException if the initial capacity of
866      * elements is negative or the load factor is nonpositive
867      *
868      * @since 1.6
869      */
ConcurrentHashMap(int initialCapacity, float loadFactor)870     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
871         this(initialCapacity, loadFactor, 1);
872     }
873 
874     /**
875      * Creates a new, empty map with an initial table size based on
876      * the given number of elements ({@code initialCapacity}), initial
877      * table density ({@code loadFactor}), and number of concurrently
878      * updating threads ({@code concurrencyLevel}).
879      *
880      * @param initialCapacity the initial capacity. The implementation
881      * performs internal sizing to accommodate this many elements,
882      * given the specified load factor.
883      * @param loadFactor the load factor (table density) for
884      * establishing the initial table size
885      * @param concurrencyLevel the estimated number of concurrently
886      * updating threads. The implementation may use this value as
887      * a sizing hint.
888      * @throws IllegalArgumentException if the initial capacity is
889      * negative or the load factor or concurrencyLevel are
890      * nonpositive
891      */
ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)892     public ConcurrentHashMap(int initialCapacity,
893                              float loadFactor, int concurrencyLevel) {
894         if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
895             throw new IllegalArgumentException();
896         if (initialCapacity < concurrencyLevel)   // Use at least as many bins
897             initialCapacity = concurrencyLevel;   // as estimated threads
898         long size = (long)(1.0 + (long)initialCapacity / loadFactor);
899         int cap = (size >= (long)MAXIMUM_CAPACITY) ?
900             MAXIMUM_CAPACITY : tableSizeFor((int)size);
901         this.sizeCtl = cap;
902     }
903 
904     // Original (since JDK1.2) Map methods
905 
906     /**
907      * {@inheritDoc}
908      */
size()909     public int size() {
910         long n = sumCount();
911         return ((n < 0L) ? 0 :
912                 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
913                 (int)n);
914     }
915 
916     /**
917      * {@inheritDoc}
918      */
isEmpty()919     public boolean isEmpty() {
920         return sumCount() <= 0L; // ignore transient negative values
921     }
922 
923     /**
924      * Returns the value to which the specified key is mapped,
925      * or {@code null} if this map contains no mapping for the key.
926      *
927      * <p>More formally, if this map contains a mapping from a key
928      * {@code k} to a value {@code v} such that {@code key.equals(k)},
929      * then this method returns {@code v}; otherwise it returns
930      * {@code null}.  (There can be at most one such mapping.)
931      *
932      * @throws NullPointerException if the specified key is null
933      */
get(Object key)934     public V get(Object key) {
935         Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
936         int h = spread(key.hashCode());
937         if ((tab = table) != null && (n = tab.length) > 0 &&
938             (e = tabAt(tab, (n - 1) & h)) != null) {
939             if ((eh = e.hash) == h) {
940                 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
941                     return e.val;
942             }
943             else if (eh < 0)
944                 return (p = e.find(h, key)) != null ? p.val : null;
945             while ((e = e.next) != null) {
946                 if (e.hash == h &&
947                     ((ek = e.key) == key || (ek != null && key.equals(ek))))
948                     return e.val;
949             }
950         }
951         return null;
952     }
953 
954     /**
955      * Tests if the specified object is a key in this table.
956      *
957      * @param  key possible key
958      * @return {@code true} if and only if the specified object
959      *         is a key in this table, as determined by the
960      *         {@code equals} method; {@code false} otherwise
961      * @throws NullPointerException if the specified key is null
962      */
containsKey(Object key)963     public boolean containsKey(Object key) {
964         return get(key) != null;
965     }
966 
967     /**
968      * Returns {@code true} if this map maps one or more keys to the
969      * specified value. Note: This method may require a full traversal
970      * of the map, and is much slower than method {@code containsKey}.
971      *
972      * @param value value whose presence in this map is to be tested
973      * @return {@code true} if this map maps one or more keys to the
974      *         specified value
975      * @throws NullPointerException if the specified value is null
976      */
containsValue(Object value)977     public boolean containsValue(Object value) {
978         if (value == null)
979             throw new NullPointerException();
980         Node<K,V>[] t;
981         if ((t = table) != null) {
982             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
983             for (Node<K,V> p; (p = it.advance()) != null; ) {
984                 V v;
985                 if ((v = p.val) == value || (v != null && value.equals(v)))
986                     return true;
987             }
988         }
989         return false;
990     }
991 
992     /**
993      * Maps the specified key to the specified value in this table.
994      * Neither the key nor the value can be null.
995      *
996      * <p>The value can be retrieved by calling the {@code get} method
997      * with a key that is equal to the original key.
998      *
999      * @param key key with which the specified value is to be associated
1000      * @param value value to be associated with the specified key
1001      * @return the previous value associated with {@code key}, or
1002      *         {@code null} if there was no mapping for {@code key}
1003      * @throws NullPointerException if the specified key or value is null
1004      */
put(K key, V value)1005     public V put(K key, V value) {
1006         return putVal(key, value, false);
1007     }
1008 
1009     /** Implementation for put and putIfAbsent */
putVal(K key, V value, boolean onlyIfAbsent)1010     final V putVal(K key, V value, boolean onlyIfAbsent) {
1011         if (key == null || value == null) throw new NullPointerException();
1012         int hash = spread(key.hashCode());
1013         int binCount = 0;
1014         for (Node<K,V>[] tab = table;;) {
1015             Node<K,V> f; int n, i, fh; K fk; V fv;
1016             if (tab == null || (n = tab.length) == 0)
1017                 tab = initTable();
1018             else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1019                 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1020                     break;                   // no lock when adding to empty bin
1021             }
1022             else if ((fh = f.hash) == MOVED)
1023                 tab = helpTransfer(tab, f);
1024             else if (onlyIfAbsent // check first node without acquiring lock
1025                      && fh == hash
1026                      && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1027                      && (fv = f.val) != null)
1028                 return fv;
1029             else {
1030                 V oldVal = null;
1031                 synchronized (f) {
1032                     if (tabAt(tab, i) == f) {
1033                         if (fh >= 0) {
1034                             binCount = 1;
1035                             for (Node<K,V> e = f;; ++binCount) {
1036                                 K ek;
1037                                 if (e.hash == hash &&
1038                                     ((ek = e.key) == key ||
1039                                      (ek != null && key.equals(ek)))) {
1040                                     oldVal = e.val;
1041                                     if (!onlyIfAbsent)
1042                                         e.val = value;
1043                                     break;
1044                                 }
1045                                 Node<K,V> pred = e;
1046                                 if ((e = e.next) == null) {
1047                                     pred.next = new Node<K,V>(hash, key, value);
1048                                     break;
1049                                 }
1050                             }
1051                         }
1052                         else if (f instanceof TreeBin) {
1053                             Node<K,V> p;
1054                             binCount = 2;
1055                             if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1056                                                            value)) != null) {
1057                                 oldVal = p.val;
1058                                 if (!onlyIfAbsent)
1059                                     p.val = value;
1060                             }
1061                         }
1062                         else if (f instanceof ReservationNode)
1063                             throw new IllegalStateException("Recursive update");
1064                     }
1065                 }
1066                 if (binCount != 0) {
1067                     if (binCount >= TREEIFY_THRESHOLD)
1068                         treeifyBin(tab, i);
1069                     if (oldVal != null)
1070                         return oldVal;
1071                     break;
1072                 }
1073             }
1074         }
1075         addCount(1L, binCount);
1076         return null;
1077     }
1078 
1079     /**
1080      * Copies all of the mappings from the specified map to this one.
1081      * These mappings replace any mappings that this map had for any of the
1082      * keys currently in the specified map.
1083      *
1084      * @param m mappings to be stored in this map
1085      */
putAll(Map<? extends K, ? extends V> m)1086     public void putAll(Map<? extends K, ? extends V> m) {
1087         tryPresize(m.size());
1088         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1089             putVal(e.getKey(), e.getValue(), false);
1090     }
1091 
1092     /**
1093      * Removes the key (and its corresponding value) from this map.
1094      * This method does nothing if the key is not in the map.
1095      *
1096      * @param  key the key that needs to be removed
1097      * @return the previous value associated with {@code key}, or
1098      *         {@code null} if there was no mapping for {@code key}
1099      * @throws NullPointerException if the specified key is null
1100      */
remove(Object key)1101     public V remove(Object key) {
1102         return replaceNode(key, null, null);
1103     }
1104 
1105     /**
1106      * Implementation for the four public remove/replace methods:
1107      * Replaces node value with v, conditional upon match of cv if
1108      * non-null.  If resulting value is null, delete.
1109      */
replaceNode(Object key, V value, Object cv)1110     final V replaceNode(Object key, V value, Object cv) {
1111         int hash = spread(key.hashCode());
1112         for (Node<K,V>[] tab = table;;) {
1113             Node<K,V> f; int n, i, fh;
1114             if (tab == null || (n = tab.length) == 0 ||
1115                 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1116                 break;
1117             else if ((fh = f.hash) == MOVED)
1118                 tab = helpTransfer(tab, f);
1119             else {
1120                 V oldVal = null;
1121                 boolean validated = false;
1122                 synchronized (f) {
1123                     if (tabAt(tab, i) == f) {
1124                         if (fh >= 0) {
1125                             validated = true;
1126                             for (Node<K,V> e = f, pred = null;;) {
1127                                 K ek;
1128                                 if (e.hash == hash &&
1129                                     ((ek = e.key) == key ||
1130                                      (ek != null && key.equals(ek)))) {
1131                                     V ev = e.val;
1132                                     if (cv == null || cv == ev ||
1133                                         (ev != null && cv.equals(ev))) {
1134                                         oldVal = ev;
1135                                         if (value != null)
1136                                             e.val = value;
1137                                         else if (pred != null)
1138                                             pred.next = e.next;
1139                                         else
1140                                             setTabAt(tab, i, e.next);
1141                                     }
1142                                     break;
1143                                 }
1144                                 pred = e;
1145                                 if ((e = e.next) == null)
1146                                     break;
1147                             }
1148                         }
1149                         else if (f instanceof TreeBin) {
1150                             validated = true;
1151                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1152                             TreeNode<K,V> r, p;
1153                             if ((r = t.root) != null &&
1154                                 (p = r.findTreeNode(hash, key, null)) != null) {
1155                                 V pv = p.val;
1156                                 if (cv == null || cv == pv ||
1157                                     (pv != null && cv.equals(pv))) {
1158                                     oldVal = pv;
1159                                     if (value != null)
1160                                         p.val = value;
1161                                     else if (t.removeTreeNode(p))
1162                                         setTabAt(tab, i, untreeify(t.first));
1163                                 }
1164                             }
1165                         }
1166                         else if (f instanceof ReservationNode)
1167                             throw new IllegalStateException("Recursive update");
1168                     }
1169                 }
1170                 if (validated) {
1171                     if (oldVal != null) {
1172                         if (value == null)
1173                             addCount(-1L, -1);
1174                         return oldVal;
1175                     }
1176                     break;
1177                 }
1178             }
1179         }
1180         return null;
1181     }
1182 
1183     /**
1184      * Removes all of the mappings from this map.
1185      */
clear()1186     public void clear() {
1187         long delta = 0L; // negative number of deletions
1188         int i = 0;
1189         Node<K,V>[] tab = table;
1190         while (tab != null && i < tab.length) {
1191             int fh;
1192             Node<K,V> f = tabAt(tab, i);
1193             if (f == null)
1194                 ++i;
1195             else if ((fh = f.hash) == MOVED) {
1196                 tab = helpTransfer(tab, f);
1197                 i = 0; // restart
1198             }
1199             else {
1200                 synchronized (f) {
1201                     if (tabAt(tab, i) == f) {
1202                         Node<K,V> p = (fh >= 0 ? f :
1203                                        (f instanceof TreeBin) ?
1204                                        ((TreeBin<K,V>)f).first : null);
1205                         while (p != null) {
1206                             --delta;
1207                             p = p.next;
1208                         }
1209                         setTabAt(tab, i++, null);
1210                     }
1211                 }
1212             }
1213         }
1214         if (delta != 0L)
1215             addCount(delta, -1);
1216     }
1217 
1218     /**
1219      * Returns a {@link Set} view of the keys contained in this map.
1220      * The set is backed by the map, so changes to the map are
1221      * reflected in the set, and vice-versa. The set supports element
1222      * removal, which removes the corresponding mapping from this map,
1223      * via the {@code Iterator.remove}, {@code Set.remove},
1224      * {@code removeAll}, {@code retainAll}, and {@code clear}
1225      * operations.  It does not support the {@code add} or
1226      * {@code addAll} operations.
1227      *
1228      * <p> The set returned by this method is guaranteed to an instance of
1229      * {@link KeySetView}.
1230      *
1231      * <p>The view's iterators and spliterators are
1232      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1233      *
1234      * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1235      * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1236      *
1237      * @return the set view
1238      */
1239     // Android-changed: Return type for backwards compat. Was KeySetView<K,V>. http://b/28099367
1240     @dalvik.annotation.codegen.CovariantReturnType(returnType = KeySetView.class, presentAfter = 28)
keySet()1241     public Set<K> keySet() {
1242         KeySetView<K,V> ks;
1243         if ((ks = keySet) != null) return ks;
1244         return keySet = new KeySetView<K,V>(this, null);
1245     }
1246 
1247     /**
1248      * Returns a {@link Collection} view of the values contained in this map.
1249      * The collection is backed by the map, so changes to the map are
1250      * reflected in the collection, and vice-versa.  The collection
1251      * supports element removal, which removes the corresponding
1252      * mapping from this map, via the {@code Iterator.remove},
1253      * {@code Collection.remove}, {@code removeAll},
1254      * {@code retainAll}, and {@code clear} operations.  It does not
1255      * support the {@code add} or {@code addAll} operations.
1256      *
1257      * <p>The view's iterators and spliterators are
1258      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1259      *
1260      * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1261      * and {@link Spliterator#NONNULL}.
1262      *
1263      * @return the collection view
1264      */
values()1265     public Collection<V> values() {
1266         ValuesView<K,V> vs;
1267         if ((vs = values) != null) return vs;
1268         return values = new ValuesView<K,V>(this);
1269     }
1270 
1271     /**
1272      * Returns a {@link Set} view of the mappings contained in this map.
1273      * The set is backed by the map, so changes to the map are
1274      * reflected in the set, and vice-versa.  The set supports element
1275      * removal, which removes the corresponding mapping from the map,
1276      * via the {@code Iterator.remove}, {@code Set.remove},
1277      * {@code removeAll}, {@code retainAll}, and {@code clear}
1278      * operations.
1279      *
1280      * <p>The view's iterators and spliterators are
1281      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1282      *
1283      * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1284      * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1285      *
1286      * @return the set view
1287      */
entrySet()1288     public Set<Map.Entry<K,V>> entrySet() {
1289         EntrySetView<K,V> es;
1290         if ((es = entrySet) != null) return es;
1291         return entrySet = new EntrySetView<K,V>(this);
1292     }
1293 
1294     /**
1295      * Returns the hash code value for this {@link Map}, i.e.,
1296      * the sum of, for each key-value pair in the map,
1297      * {@code key.hashCode() ^ value.hashCode()}.
1298      *
1299      * @return the hash code value for this map
1300      */
hashCode()1301     public int hashCode() {
1302         int h = 0;
1303         Node<K,V>[] t;
1304         if ((t = table) != null) {
1305             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1306             for (Node<K,V> p; (p = it.advance()) != null; )
1307                 h += p.key.hashCode() ^ p.val.hashCode();
1308         }
1309         return h;
1310     }
1311 
1312     /**
1313      * Returns a string representation of this map.  The string
1314      * representation consists of a list of key-value mappings (in no
1315      * particular order) enclosed in braces ("{@code {}}").  Adjacent
1316      * mappings are separated by the characters {@code ", "} (comma
1317      * and space).  Each key-value mapping is rendered as the key
1318      * followed by an equals sign ("{@code =}") followed by the
1319      * associated value.
1320      *
1321      * @return a string representation of this map
1322      */
toString()1323     public String toString() {
1324         Node<K,V>[] t;
1325         int f = (t = table) == null ? 0 : t.length;
1326         Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1327         StringBuilder sb = new StringBuilder();
1328         sb.append('{');
1329         Node<K,V> p;
1330         if ((p = it.advance()) != null) {
1331             for (;;) {
1332                 K k = p.key;
1333                 V v = p.val;
1334                 sb.append(k == this ? "(this Map)" : k);
1335                 sb.append('=');
1336                 sb.append(v == this ? "(this Map)" : v);
1337                 if ((p = it.advance()) == null)
1338                     break;
1339                 sb.append(',').append(' ');
1340             }
1341         }
1342         return sb.append('}').toString();
1343     }
1344 
1345     /**
1346      * Compares the specified object with this map for equality.
1347      * Returns {@code true} if the given object is a map with the same
1348      * mappings as this map.  This operation may return misleading
1349      * results if either map is concurrently modified during execution
1350      * of this method.
1351      *
1352      * @param o object to be compared for equality with this map
1353      * @return {@code true} if the specified object is equal to this map
1354      */
equals(Object o)1355     public boolean equals(Object o) {
1356         if (o != this) {
1357             if (!(o instanceof Map))
1358                 return false;
1359             Map<?,?> m = (Map<?,?>) o;
1360             Node<K,V>[] t;
1361             int f = (t = table) == null ? 0 : t.length;
1362             Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1363             for (Node<K,V> p; (p = it.advance()) != null; ) {
1364                 V val = p.val;
1365                 Object v = m.get(p.key);
1366                 if (v == null || (v != val && !v.equals(val)))
1367                     return false;
1368             }
1369             for (Map.Entry<?,?> e : m.entrySet()) {
1370                 Object mk, mv, v;
1371                 if ((mk = e.getKey()) == null ||
1372                     (mv = e.getValue()) == null ||
1373                     (v = get(mk)) == null ||
1374                     (mv != v && !mv.equals(v)))
1375                     return false;
1376             }
1377         }
1378         return true;
1379     }
1380 
1381     /**
1382      * Stripped-down version of helper class used in previous version,
1383      * declared for the sake of serialization compatibility.
1384      */
1385     static class Segment<K,V> extends ReentrantLock implements Serializable {
1386         private static final long serialVersionUID = 2249069246763182397L;
1387         final float loadFactor;
Segment(float lf)1388         Segment(float lf) { this.loadFactor = lf; }
1389     }
1390 
1391     /**
1392      * Saves this map to a stream (that is, serializes it).
1393      *
1394      * @param s the stream
1395      * @throws java.io.IOException if an I/O error occurs
1396      * @serialData
1397      * the serialized fields, followed by the key (Object) and value
1398      * (Object) for each key-value mapping, followed by a null pair.
1399      * The key-value mappings are emitted in no particular order.
1400      */
writeObject(java.io.ObjectOutputStream s)1401     private void writeObject(java.io.ObjectOutputStream s)
1402         throws java.io.IOException {
1403         // For serialization compatibility
1404         // Emulate segment calculation from previous version of this class
1405         int sshift = 0;
1406         int ssize = 1;
1407         while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1408             ++sshift;
1409             ssize <<= 1;
1410         }
1411         int segmentShift = 32 - sshift;
1412         int segmentMask = ssize - 1;
1413         @SuppressWarnings("unchecked")
1414         Segment<K,V>[] segments = (Segment<K,V>[])
1415             new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1416         for (int i = 0; i < segments.length; ++i)
1417             segments[i] = new Segment<K,V>(LOAD_FACTOR);
1418         java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1419         streamFields.put("segments", segments);
1420         streamFields.put("segmentShift", segmentShift);
1421         streamFields.put("segmentMask", segmentMask);
1422         s.writeFields();
1423 
1424         Node<K,V>[] t;
1425         if ((t = table) != null) {
1426             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1427             for (Node<K,V> p; (p = it.advance()) != null; ) {
1428                 s.writeObject(p.key);
1429                 s.writeObject(p.val);
1430             }
1431         }
1432         s.writeObject(null);
1433         s.writeObject(null);
1434     }
1435 
1436     /**
1437      * Reconstitutes this map from a stream (that is, deserializes it).
1438      * @param s the stream
1439      * @throws ClassNotFoundException if the class of a serialized object
1440      *         could not be found
1441      * @throws java.io.IOException if an I/O error occurs
1442      */
readObject(java.io.ObjectInputStream s)1443     private void readObject(java.io.ObjectInputStream s)
1444         throws java.io.IOException, ClassNotFoundException {
1445         /*
1446          * To improve performance in typical cases, we create nodes
1447          * while reading, then place in table once size is known.
1448          * However, we must also validate uniqueness and deal with
1449          * overpopulated bins while doing so, which requires
1450          * specialized versions of putVal mechanics.
1451          */
1452         sizeCtl = -1; // force exclusion for table construction
1453         s.defaultReadObject();
1454         long size = 0L;
1455         Node<K,V> p = null;
1456         for (;;) {
1457             @SuppressWarnings("unchecked")
1458             K k = (K) s.readObject();
1459             @SuppressWarnings("unchecked")
1460             V v = (V) s.readObject();
1461             if (k != null && v != null) {
1462                 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1463                 ++size;
1464             }
1465             else
1466                 break;
1467         }
1468         if (size == 0L)
1469             sizeCtl = 0;
1470         else {
1471             long ts = (long)(1.0 + size / LOAD_FACTOR);
1472             int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1473                 MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1474             @SuppressWarnings("unchecked")
1475             Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1476             int mask = n - 1;
1477             long added = 0L;
1478             while (p != null) {
1479                 boolean insertAtFront;
1480                 Node<K,V> next = p.next, first;
1481                 int h = p.hash, j = h & mask;
1482                 if ((first = tabAt(tab, j)) == null)
1483                     insertAtFront = true;
1484                 else {
1485                     K k = p.key;
1486                     if (first.hash < 0) {
1487                         TreeBin<K,V> t = (TreeBin<K,V>)first;
1488                         if (t.putTreeVal(h, k, p.val) == null)
1489                             ++added;
1490                         insertAtFront = false;
1491                     }
1492                     else {
1493                         int binCount = 0;
1494                         insertAtFront = true;
1495                         Node<K,V> q; K qk;
1496                         for (q = first; q != null; q = q.next) {
1497                             if (q.hash == h &&
1498                                 ((qk = q.key) == k ||
1499                                  (qk != null && k.equals(qk)))) {
1500                                 insertAtFront = false;
1501                                 break;
1502                             }
1503                             ++binCount;
1504                         }
1505                         if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1506                             insertAtFront = false;
1507                             ++added;
1508                             p.next = first;
1509                             TreeNode<K,V> hd = null, tl = null;
1510                             for (q = p; q != null; q = q.next) {
1511                                 TreeNode<K,V> t = new TreeNode<K,V>
1512                                     (q.hash, q.key, q.val, null, null);
1513                                 if ((t.prev = tl) == null)
1514                                     hd = t;
1515                                 else
1516                                     tl.next = t;
1517                                 tl = t;
1518                             }
1519                             setTabAt(tab, j, new TreeBin<K,V>(hd));
1520                         }
1521                     }
1522                 }
1523                 if (insertAtFront) {
1524                     ++added;
1525                     p.next = first;
1526                     setTabAt(tab, j, p);
1527                 }
1528                 p = next;
1529             }
1530             table = tab;
1531             sizeCtl = n - (n >>> 2);
1532             baseCount = added;
1533         }
1534     }
1535 
1536     // ConcurrentMap methods
1537 
1538     /**
1539      * {@inheritDoc}
1540      *
1541      * @return the previous value associated with the specified key,
1542      *         or {@code null} if there was no mapping for the key
1543      * @throws NullPointerException if the specified key or value is null
1544      */
putIfAbsent(K key, V value)1545     public V putIfAbsent(K key, V value) {
1546         return putVal(key, value, true);
1547     }
1548 
1549     /**
1550      * {@inheritDoc}
1551      *
1552      * @throws NullPointerException if the specified key is null
1553      */
remove(Object key, Object value)1554     public boolean remove(Object key, Object value) {
1555         if (key == null)
1556             throw new NullPointerException();
1557         return value != null && replaceNode(key, null, value) != null;
1558     }
1559 
1560     /**
1561      * {@inheritDoc}
1562      *
1563      * @throws NullPointerException if any of the arguments are null
1564      */
replace(K key, V oldValue, V newValue)1565     public boolean replace(K key, V oldValue, V newValue) {
1566         if (key == null || oldValue == null || newValue == null)
1567             throw new NullPointerException();
1568         return replaceNode(key, newValue, oldValue) != null;
1569     }
1570 
1571     /**
1572      * {@inheritDoc}
1573      *
1574      * @return the previous value associated with the specified key,
1575      *         or {@code null} if there was no mapping for the key
1576      * @throws NullPointerException if the specified key or value is null
1577      */
replace(K key, V value)1578     public V replace(K key, V value) {
1579         if (key == null || value == null)
1580             throw new NullPointerException();
1581         return replaceNode(key, value, null);
1582     }
1583 
1584     // Overrides of JDK8+ Map extension method defaults
1585 
1586     /**
1587      * Returns the value to which the specified key is mapped, or the
1588      * given default value if this map contains no mapping for the
1589      * key.
1590      *
1591      * @param key the key whose associated value is to be returned
1592      * @param defaultValue the value to return if this map contains
1593      * no mapping for the given key
1594      * @return the mapping for the key, if present; else the default value
1595      * @throws NullPointerException if the specified key is null
1596      */
getOrDefault(Object key, V defaultValue)1597     public V getOrDefault(Object key, V defaultValue) {
1598         V v;
1599         return (v = get(key)) == null ? defaultValue : v;
1600     }
1601 
forEach(BiConsumer<? super K, ? super V> action)1602     public void forEach(BiConsumer<? super K, ? super V> action) {
1603         if (action == null) throw new NullPointerException();
1604         Node<K,V>[] t;
1605         if ((t = table) != null) {
1606             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607             for (Node<K,V> p; (p = it.advance()) != null; ) {
1608                 action.accept(p.key, p.val);
1609             }
1610         }
1611     }
1612 
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)1613     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1614         if (function == null) throw new NullPointerException();
1615         Node<K,V>[] t;
1616         if ((t = table) != null) {
1617             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1618             for (Node<K,V> p; (p = it.advance()) != null; ) {
1619                 V oldValue = p.val;
1620                 for (K key = p.key;;) {
1621                     V newValue = function.apply(key, oldValue);
1622                     if (newValue == null)
1623                         throw new NullPointerException();
1624                     if (replaceNode(key, newValue, oldValue) != null ||
1625                         (oldValue = get(key)) == null)
1626                         break;
1627                 }
1628             }
1629         }
1630     }
1631 
1632     /**
1633      * Helper method for EntrySetView.removeIf.
1634      */
removeEntryIf(Predicate<? super Entry<K,V>> function)1635     boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1636         if (function == null) throw new NullPointerException();
1637         Node<K,V>[] t;
1638         boolean removed = false;
1639         if ((t = table) != null) {
1640             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1641             for (Node<K,V> p; (p = it.advance()) != null; ) {
1642                 K k = p.key;
1643                 V v = p.val;
1644                 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1645                 if (function.test(e) && replaceNode(k, null, v) != null)
1646                     removed = true;
1647             }
1648         }
1649         return removed;
1650     }
1651 
1652     /**
1653      * Helper method for ValuesView.removeIf.
1654      */
removeValueIf(Predicate<? super V> function)1655     boolean removeValueIf(Predicate<? super V> function) {
1656         if (function == null) throw new NullPointerException();
1657         Node<K,V>[] t;
1658         boolean removed = false;
1659         if ((t = table) != null) {
1660             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1661             for (Node<K,V> p; (p = it.advance()) != null; ) {
1662                 K k = p.key;
1663                 V v = p.val;
1664                 if (function.test(v) && replaceNode(k, null, v) != null)
1665                     removed = true;
1666             }
1667         }
1668         return removed;
1669     }
1670 
1671     /**
1672      * If the specified key is not already associated with a value,
1673      * attempts to compute its value using the given mapping function
1674      * and enters it into this map unless {@code null}.  The entire
1675      * method invocation is performed atomically.  The supplied
1676      * function is invoked exactly once per invocation of this method
1677      * if the key is absent, else not at all.  Some attempted update
1678      * operations on this map by other threads may be blocked while
1679      * computation is in progress, so the computation should be short
1680      * and simple.
1681      *
1682      * <p>The mapping function must not modify this map during computation.
1683      *
1684      * @param key key with which the specified value is to be associated
1685      * @param mappingFunction the function to compute a value
1686      * @return the current (existing or computed) value associated with
1687      *         the specified key, or null if the computed value is null
1688      * @throws NullPointerException if the specified key or mappingFunction
1689      *         is null
1690      * @throws IllegalStateException if the computation detectably
1691      *         attempts a recursive update to this map that would
1692      *         otherwise never complete
1693      * @throws RuntimeException or Error if the mappingFunction does so,
1694      *         in which case the mapping is left unestablished
1695      */
computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)1696     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1697         if (key == null || mappingFunction == null)
1698             throw new NullPointerException();
1699         int h = spread(key.hashCode());
1700         V val = null;
1701         int binCount = 0;
1702         for (Node<K,V>[] tab = table;;) {
1703             Node<K,V> f; int n, i, fh; K fk; V fv;
1704             if (tab == null || (n = tab.length) == 0)
1705                 tab = initTable();
1706             else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1707                 Node<K,V> r = new ReservationNode<K,V>();
1708                 synchronized (r) {
1709                     if (casTabAt(tab, i, null, r)) {
1710                         binCount = 1;
1711                         Node<K,V> node = null;
1712                         try {
1713                             if ((val = mappingFunction.apply(key)) != null)
1714                                 node = new Node<K,V>(h, key, val);
1715                         } finally {
1716                             setTabAt(tab, i, node);
1717                         }
1718                     }
1719                 }
1720                 if (binCount != 0)
1721                     break;
1722             }
1723             else if ((fh = f.hash) == MOVED)
1724                 tab = helpTransfer(tab, f);
1725             else if (fh == h    // check first node without acquiring lock
1726                      && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1727                      && (fv = f.val) != null)
1728                 return fv;
1729             else {
1730                 boolean added = false;
1731                 synchronized (f) {
1732                     if (tabAt(tab, i) == f) {
1733                         if (fh >= 0) {
1734                             binCount = 1;
1735                             for (Node<K,V> e = f;; ++binCount) {
1736                                 K ek;
1737                                 if (e.hash == h &&
1738                                     ((ek = e.key) == key ||
1739                                      (ek != null && key.equals(ek)))) {
1740                                     val = e.val;
1741                                     break;
1742                                 }
1743                                 Node<K,V> pred = e;
1744                                 if ((e = e.next) == null) {
1745                                     if ((val = mappingFunction.apply(key)) != null) {
1746                                         if (pred.next != null)
1747                                             throw new IllegalStateException("Recursive update");
1748                                         added = true;
1749                                         pred.next = new Node<K,V>(h, key, val);
1750                                     }
1751                                     break;
1752                                 }
1753                             }
1754                         }
1755                         else if (f instanceof TreeBin) {
1756                             binCount = 2;
1757                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1758                             TreeNode<K,V> r, p;
1759                             if ((r = t.root) != null &&
1760                                 (p = r.findTreeNode(h, key, null)) != null)
1761                                 val = p.val;
1762                             else if ((val = mappingFunction.apply(key)) != null) {
1763                                 added = true;
1764                                 t.putTreeVal(h, key, val);
1765                             }
1766                         }
1767                         else if (f instanceof ReservationNode)
1768                             throw new IllegalStateException("Recursive update");
1769                     }
1770                 }
1771                 if (binCount != 0) {
1772                     if (binCount >= TREEIFY_THRESHOLD)
1773                         treeifyBin(tab, i);
1774                     if (!added)
1775                         return val;
1776                     break;
1777                 }
1778             }
1779         }
1780         if (val != null)
1781             addCount(1L, binCount);
1782         return val;
1783     }
1784 
1785     /**
1786      * If the value for the specified key is present, attempts to
1787      * compute a new mapping given the key and its current mapped
1788      * value.  The entire method invocation is performed atomically.
1789      * The supplied function is invoked exactly once per invocation of
1790      * this method if the key is present, else not at all.  Some
1791      * attempted update operations on this map by other threads may be
1792      * blocked while computation is in progress, so the computation
1793      * should be short and simple.
1794      *
1795      * <p>The remapping function must not modify this map during computation.
1796      *
1797      * @param key key with which a value may be associated
1798      * @param remappingFunction the function to compute a value
1799      * @return the new value associated with the specified key, or null if none
1800      * @throws NullPointerException if the specified key or remappingFunction
1801      *         is null
1802      * @throws IllegalStateException if the computation detectably
1803      *         attempts a recursive update to this map that would
1804      *         otherwise never complete
1805      * @throws RuntimeException or Error if the remappingFunction does so,
1806      *         in which case the mapping is unchanged
1807      */
computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)1808     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1809         if (key == null || remappingFunction == null)
1810             throw new NullPointerException();
1811         int h = spread(key.hashCode());
1812         V val = null;
1813         int delta = 0;
1814         int binCount = 0;
1815         for (Node<K,V>[] tab = table;;) {
1816             Node<K,V> f; int n, i, fh;
1817             if (tab == null || (n = tab.length) == 0)
1818                 tab = initTable();
1819             else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1820                 break;
1821             else if ((fh = f.hash) == MOVED)
1822                 tab = helpTransfer(tab, f);
1823             else {
1824                 synchronized (f) {
1825                     if (tabAt(tab, i) == f) {
1826                         if (fh >= 0) {
1827                             binCount = 1;
1828                             for (Node<K,V> e = f, pred = null;; ++binCount) {
1829                                 K ek;
1830                                 if (e.hash == h &&
1831                                     ((ek = e.key) == key ||
1832                                      (ek != null && key.equals(ek)))) {
1833                                     val = remappingFunction.apply(key, e.val);
1834                                     if (val != null)
1835                                         e.val = val;
1836                                     else {
1837                                         delta = -1;
1838                                         Node<K,V> en = e.next;
1839                                         if (pred != null)
1840                                             pred.next = en;
1841                                         else
1842                                             setTabAt(tab, i, en);
1843                                     }
1844                                     break;
1845                                 }
1846                                 pred = e;
1847                                 if ((e = e.next) == null)
1848                                     break;
1849                             }
1850                         }
1851                         else if (f instanceof TreeBin) {
1852                             binCount = 2;
1853                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1854                             TreeNode<K,V> r, p;
1855                             if ((r = t.root) != null &&
1856                                 (p = r.findTreeNode(h, key, null)) != null) {
1857                                 val = remappingFunction.apply(key, p.val);
1858                                 if (val != null)
1859                                     p.val = val;
1860                                 else {
1861                                     delta = -1;
1862                                     if (t.removeTreeNode(p))
1863                                         setTabAt(tab, i, untreeify(t.first));
1864                                 }
1865                             }
1866                         }
1867                         else if (f instanceof ReservationNode)
1868                             throw new IllegalStateException("Recursive update");
1869                     }
1870                 }
1871                 if (binCount != 0)
1872                     break;
1873             }
1874         }
1875         if (delta != 0)
1876             addCount((long)delta, binCount);
1877         return val;
1878     }
1879 
1880     /**
1881      * Attempts to compute a mapping for the specified key and its
1882      * current mapped value (or {@code null} if there is no current
1883      * mapping). The entire method invocation is performed atomically.
1884      * The supplied function is invoked exactly once per invocation of
1885      * this method.  Some attempted update operations on this map by
1886      * other threads may be blocked while computation is in progress,
1887      * so the computation should be short and simple.
1888      *
1889      * <p>The remapping function must not modify this map during computation.
1890      *
1891      * @param key key with which the specified value is to be associated
1892      * @param remappingFunction the function to compute a value
1893      * @return the new value associated with the specified key, or null if none
1894      * @throws NullPointerException if the specified key or remappingFunction
1895      *         is null
1896      * @throws IllegalStateException if the computation detectably
1897      *         attempts a recursive update to this map that would
1898      *         otherwise never complete
1899      * @throws RuntimeException or Error if the remappingFunction does so,
1900      *         in which case the mapping is unchanged
1901      */
compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)1902     public V compute(K key,
1903                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1904         if (key == null || remappingFunction == null)
1905             throw new NullPointerException();
1906         int h = spread(key.hashCode());
1907         V val = null;
1908         int delta = 0;
1909         int binCount = 0;
1910         for (Node<K,V>[] tab = table;;) {
1911             Node<K,V> f; int n, i, fh;
1912             if (tab == null || (n = tab.length) == 0)
1913                 tab = initTable();
1914             else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1915                 Node<K,V> r = new ReservationNode<K,V>();
1916                 synchronized (r) {
1917                     if (casTabAt(tab, i, null, r)) {
1918                         binCount = 1;
1919                         Node<K,V> node = null;
1920                         try {
1921                             if ((val = remappingFunction.apply(key, null)) != null) {
1922                                 delta = 1;
1923                                 node = new Node<K,V>(h, key, val);
1924                             }
1925                         } finally {
1926                             setTabAt(tab, i, node);
1927                         }
1928                     }
1929                 }
1930                 if (binCount != 0)
1931                     break;
1932             }
1933             else if ((fh = f.hash) == MOVED)
1934                 tab = helpTransfer(tab, f);
1935             else {
1936                 synchronized (f) {
1937                     if (tabAt(tab, i) == f) {
1938                         if (fh >= 0) {
1939                             binCount = 1;
1940                             for (Node<K,V> e = f, pred = null;; ++binCount) {
1941                                 K ek;
1942                                 if (e.hash == h &&
1943                                     ((ek = e.key) == key ||
1944                                      (ek != null && key.equals(ek)))) {
1945                                     val = remappingFunction.apply(key, e.val);
1946                                     if (val != null)
1947                                         e.val = val;
1948                                     else {
1949                                         delta = -1;
1950                                         Node<K,V> en = e.next;
1951                                         if (pred != null)
1952                                             pred.next = en;
1953                                         else
1954                                             setTabAt(tab, i, en);
1955                                     }
1956                                     break;
1957                                 }
1958                                 pred = e;
1959                                 if ((e = e.next) == null) {
1960                                     val = remappingFunction.apply(key, null);
1961                                     if (val != null) {
1962                                         if (pred.next != null)
1963                                             throw new IllegalStateException("Recursive update");
1964                                         delta = 1;
1965                                         pred.next = new Node<K,V>(h, key, val);
1966                                     }
1967                                     break;
1968                                 }
1969                             }
1970                         }
1971                         else if (f instanceof TreeBin) {
1972                             binCount = 1;
1973                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1974                             TreeNode<K,V> r, p;
1975                             if ((r = t.root) != null)
1976                                 p = r.findTreeNode(h, key, null);
1977                             else
1978                                 p = null;
1979                             V pv = (p == null) ? null : p.val;
1980                             val = remappingFunction.apply(key, pv);
1981                             if (val != null) {
1982                                 if (p != null)
1983                                     p.val = val;
1984                                 else {
1985                                     delta = 1;
1986                                     t.putTreeVal(h, key, val);
1987                                 }
1988                             }
1989                             else if (p != null) {
1990                                 delta = -1;
1991                                 if (t.removeTreeNode(p))
1992                                     setTabAt(tab, i, untreeify(t.first));
1993                             }
1994                         }
1995                         else if (f instanceof ReservationNode)
1996                             throw new IllegalStateException("Recursive update");
1997                     }
1998                 }
1999                 if (binCount != 0) {
2000                     if (binCount >= TREEIFY_THRESHOLD)
2001                         treeifyBin(tab, i);
2002                     break;
2003                 }
2004             }
2005         }
2006         if (delta != 0)
2007             addCount((long)delta, binCount);
2008         return val;
2009     }
2010 
2011     /**
2012      * If the specified key is not already associated with a
2013      * (non-null) value, associates it with the given value.
2014      * Otherwise, replaces the value with the results of the given
2015      * remapping function, or removes if {@code null}. The entire
2016      * method invocation is performed atomically.  Some attempted
2017      * update operations on this map by other threads may be blocked
2018      * while computation is in progress, so the computation should be
2019      * short and simple, and must not attempt to update any other
2020      * mappings of this Map.
2021      *
2022      * @param key key with which the specified value is to be associated
2023      * @param value the value to use if absent
2024      * @param remappingFunction the function to recompute a value if present
2025      * @return the new value associated with the specified key, or null if none
2026      * @throws NullPointerException if the specified key or the
2027      *         remappingFunction is null
2028      * @throws RuntimeException or Error if the remappingFunction does so,
2029      *         in which case the mapping is unchanged
2030      */
merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction)2031     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2032         if (key == null || value == null || remappingFunction == null)
2033             throw new NullPointerException();
2034         int h = spread(key.hashCode());
2035         V val = null;
2036         int delta = 0;
2037         int binCount = 0;
2038         for (Node<K,V>[] tab = table;;) {
2039             Node<K,V> f; int n, i, fh;
2040             if (tab == null || (n = tab.length) == 0)
2041                 tab = initTable();
2042             else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2043                 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2044                     delta = 1;
2045                     val = value;
2046                     break;
2047                 }
2048             }
2049             else if ((fh = f.hash) == MOVED)
2050                 tab = helpTransfer(tab, f);
2051             else {
2052                 synchronized (f) {
2053                     if (tabAt(tab, i) == f) {
2054                         if (fh >= 0) {
2055                             binCount = 1;
2056                             for (Node<K,V> e = f, pred = null;; ++binCount) {
2057                                 K ek;
2058                                 if (e.hash == h &&
2059                                     ((ek = e.key) == key ||
2060                                      (ek != null && key.equals(ek)))) {
2061                                     val = remappingFunction.apply(e.val, value);
2062                                     if (val != null)
2063                                         e.val = val;
2064                                     else {
2065                                         delta = -1;
2066                                         Node<K,V> en = e.next;
2067                                         if (pred != null)
2068                                             pred.next = en;
2069                                         else
2070                                             setTabAt(tab, i, en);
2071                                     }
2072                                     break;
2073                                 }
2074                                 pred = e;
2075                                 if ((e = e.next) == null) {
2076                                     delta = 1;
2077                                     val = value;
2078                                     pred.next = new Node<K,V>(h, key, val);
2079                                     break;
2080                                 }
2081                             }
2082                         }
2083                         else if (f instanceof TreeBin) {
2084                             binCount = 2;
2085                             TreeBin<K,V> t = (TreeBin<K,V>)f;
2086                             TreeNode<K,V> r = t.root;
2087                             TreeNode<K,V> p = (r == null) ? null :
2088                                 r.findTreeNode(h, key, null);
2089                             val = (p == null) ? value :
2090                                 remappingFunction.apply(p.val, value);
2091                             if (val != null) {
2092                                 if (p != null)
2093                                     p.val = val;
2094                                 else {
2095                                     delta = 1;
2096                                     t.putTreeVal(h, key, val);
2097                                 }
2098                             }
2099                             else if (p != null) {
2100                                 delta = -1;
2101                                 if (t.removeTreeNode(p))
2102                                     setTabAt(tab, i, untreeify(t.first));
2103                             }
2104                         }
2105                         else if (f instanceof ReservationNode)
2106                             throw new IllegalStateException("Recursive update");
2107                     }
2108                 }
2109                 if (binCount != 0) {
2110                     if (binCount >= TREEIFY_THRESHOLD)
2111                         treeifyBin(tab, i);
2112                     break;
2113                 }
2114             }
2115         }
2116         if (delta != 0)
2117             addCount((long)delta, binCount);
2118         return val;
2119     }
2120 
2121     // Hashtable legacy methods
2122 
2123     /**
2124      * Tests if some key maps into the specified value in this table.
2125      *
2126      * <p>Note that this method is identical in functionality to
2127      * {@link #containsValue(Object)}, and exists solely to ensure
2128      * full compatibility with class {@link java.util.Hashtable},
2129      * which supported this method prior to introduction of the
2130      * Java Collections Framework.
2131      *
2132      * @param  value a value to search for
2133      * @return {@code true} if and only if some key maps to the
2134      *         {@code value} argument in this table as
2135      *         determined by the {@code equals} method;
2136      *         {@code false} otherwise
2137      * @throws NullPointerException if the specified value is null
2138      */
contains(Object value)2139     public boolean contains(Object value) {
2140         return containsValue(value);
2141     }
2142 
2143     /**
2144      * Returns an enumeration of the keys in this table.
2145      *
2146      * @return an enumeration of the keys in this table
2147      * @see #keySet()
2148      */
keys()2149     public Enumeration<K> keys() {
2150         Node<K,V>[] t;
2151         int f = (t = table) == null ? 0 : t.length;
2152         return new KeyIterator<K,V>(t, f, 0, f, this);
2153     }
2154 
2155     /**
2156      * Returns an enumeration of the values in this table.
2157      *
2158      * @return an enumeration of the values in this table
2159      * @see #values()
2160      */
elements()2161     public Enumeration<V> elements() {
2162         Node<K,V>[] t;
2163         int f = (t = table) == null ? 0 : t.length;
2164         return new ValueIterator<K,V>(t, f, 0, f, this);
2165     }
2166 
2167     // ConcurrentHashMap-only methods
2168 
2169     /**
2170      * Returns the number of mappings. This method should be used
2171      * instead of {@link #size} because a ConcurrentHashMap may
2172      * contain more mappings than can be represented as an int. The
2173      * value returned is an estimate; the actual count may differ if
2174      * there are concurrent insertions or removals.
2175      *
2176      * @return the number of mappings
2177      * @since 1.8
2178      */
mappingCount()2179     public long mappingCount() {
2180         long n = sumCount();
2181         return (n < 0L) ? 0L : n; // ignore transient negative values
2182     }
2183 
2184     /**
2185      * Creates a new {@link Set} backed by a ConcurrentHashMap
2186      * from the given type to {@code Boolean.TRUE}.
2187      *
2188      * @param <K> the element type of the returned set
2189      * @return the new set
2190      * @since 1.8
2191      */
newKeySet()2192     public static <K> KeySetView<K,Boolean> newKeySet() {
2193         return new KeySetView<K,Boolean>
2194             (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2195     }
2196 
2197     /**
2198      * Creates a new {@link Set} backed by a ConcurrentHashMap
2199      * from the given type to {@code Boolean.TRUE}.
2200      *
2201      * @param initialCapacity The implementation performs internal
2202      * sizing to accommodate this many elements.
2203      * @param <K> the element type of the returned set
2204      * @return the new set
2205      * @throws IllegalArgumentException if the initial capacity of
2206      * elements is negative
2207      * @since 1.8
2208      */
newKeySet(int initialCapacity)2209     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2210         return new KeySetView<K,Boolean>
2211             (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2212     }
2213 
2214     /**
2215      * Returns a {@link Set} view of the keys in this map, using the
2216      * given common mapped value for any additions (i.e., {@link
2217      * Collection#add} and {@link Collection#addAll(Collection)}).
2218      * This is of course only appropriate if it is acceptable to use
2219      * the same value for all additions from this view.
2220      *
2221      * @param mappedValue the mapped value to use for any additions
2222      * @return the set view
2223      * @throws NullPointerException if the mappedValue is null
2224      */
keySet(V mappedValue)2225     public KeySetView<K,V> keySet(V mappedValue) {
2226         if (mappedValue == null)
2227             throw new NullPointerException();
2228         return new KeySetView<K,V>(this, mappedValue);
2229     }
2230 
2231     /* ---------------- Special Nodes -------------- */
2232 
2233     /**
2234      * A node inserted at head of bins during transfer operations.
2235      */
2236     static final class ForwardingNode<K,V> extends Node<K,V> {
2237         final Node<K,V>[] nextTable;
ForwardingNode(Node<K,V>[] tab)2238         ForwardingNode(Node<K,V>[] tab) {
2239             super(MOVED, null, null);
2240             this.nextTable = tab;
2241         }
2242 
find(int h, Object k)2243         Node<K,V> find(int h, Object k) {
2244             // loop to avoid arbitrarily deep recursion on forwarding nodes
2245             outer: for (Node<K,V>[] tab = nextTable;;) {
2246                 Node<K,V> e; int n;
2247                 if (k == null || tab == null || (n = tab.length) == 0 ||
2248                     (e = tabAt(tab, (n - 1) & h)) == null)
2249                     return null;
2250                 for (;;) {
2251                     int eh; K ek;
2252                     if ((eh = e.hash) == h &&
2253                         ((ek = e.key) == k || (ek != null && k.equals(ek))))
2254                         return e;
2255                     if (eh < 0) {
2256                         if (e instanceof ForwardingNode) {
2257                             tab = ((ForwardingNode<K,V>)e).nextTable;
2258                             continue outer;
2259                         }
2260                         else
2261                             return e.find(h, k);
2262                     }
2263                     if ((e = e.next) == null)
2264                         return null;
2265                 }
2266             }
2267         }
2268     }
2269 
2270     /**
2271      * A place-holder node used in computeIfAbsent and compute.
2272      */
2273     static final class ReservationNode<K,V> extends Node<K,V> {
ReservationNode()2274         ReservationNode() {
2275             super(RESERVED, null, null);
2276         }
2277 
find(int h, Object k)2278         Node<K,V> find(int h, Object k) {
2279             return null;
2280         }
2281     }
2282 
2283     /* ---------------- Table Initialization and Resizing -------------- */
2284 
2285     /**
2286      * Returns the stamp bits for resizing a table of size n.
2287      * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2288      */
resizeStamp(int n)2289     static final int resizeStamp(int n) {
2290         return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2291     }
2292 
2293     /**
2294      * Initializes table, using the size recorded in sizeCtl.
2295      */
initTable()2296     private final Node<K,V>[] initTable() {
2297         Node<K,V>[] tab; int sc;
2298         while ((tab = table) == null || tab.length == 0) {
2299             if ((sc = sizeCtl) < 0)
2300                 Thread.yield(); // lost initialization race; just spin
2301             else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2302                 try {
2303                     if ((tab = table) == null || tab.length == 0) {
2304                         int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2305                         @SuppressWarnings("unchecked")
2306                         Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2307                         table = tab = nt;
2308                         sc = n - (n >>> 2);
2309                     }
2310                 } finally {
2311                     sizeCtl = sc;
2312                 }
2313                 break;
2314             }
2315         }
2316         return tab;
2317     }
2318 
2319     /**
2320      * Adds to count, and if table is too small and not already
2321      * resizing, initiates transfer. If already resizing, helps
2322      * perform transfer if work is available.  Rechecks occupancy
2323      * after a transfer to see if another resize is already needed
2324      * because resizings are lagging additions.
2325      *
2326      * @param x the count to add
2327      * @param check if <0, don't check resize, if <= 1 only check if uncontended
2328      */
addCount(long x, int check)2329     private final void addCount(long x, int check) {
2330         CounterCell[] cs; long b, s;
2331         if ((cs = counterCells) != null ||
2332             !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2333             CounterCell c; long v; int m;
2334             boolean uncontended = true;
2335             if (cs == null || (m = cs.length - 1) < 0 ||
2336                 (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2337                 !(uncontended =
2338                   U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2339                 fullAddCount(x, uncontended);
2340                 return;
2341             }
2342             if (check <= 1)
2343                 return;
2344             s = sumCount();
2345         }
2346         if (check >= 0) {
2347             Node<K,V>[] tab, nt; int n, sc;
2348             while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2349                    (n = tab.length) < MAXIMUM_CAPACITY) {
2350                 int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2351                 if (sc < 0) {
2352                     if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2353                         (nt = nextTable) == null || transferIndex <= 0)
2354                         break;
2355                     if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2356                         transfer(tab, nt);
2357                 }
2358                 else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2359                     transfer(tab, null);
2360                 s = sumCount();
2361             }
2362         }
2363     }
2364 
2365     /**
2366      * Helps transfer if a resize is in progress.
2367      */
helpTransfer(Node<K,V>[] tab, Node<K,V> f)2368     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2369         Node<K,V>[] nextTab; int sc;
2370         if (tab != null && (f instanceof ForwardingNode) &&
2371             (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2372             int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2373             while (nextTab == nextTable && table == tab &&
2374                    (sc = sizeCtl) < 0) {
2375                 if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2376                     transferIndex <= 0)
2377                     break;
2378                 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2379                     transfer(tab, nextTab);
2380                     break;
2381                 }
2382             }
2383             return nextTab;
2384         }
2385         return table;
2386     }
2387 
2388     /**
2389      * Tries to presize table to accommodate the given number of elements.
2390      *
2391      * @param size number of elements (doesn't need to be perfectly accurate)
2392      */
tryPresize(int size)2393     private final void tryPresize(int size) {
2394         int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2395             tableSizeFor(size + (size >>> 1) + 1);
2396         int sc;
2397         while ((sc = sizeCtl) >= 0) {
2398             Node<K,V>[] tab = table; int n;
2399             if (tab == null || (n = tab.length) == 0) {
2400                 n = (sc > c) ? sc : c;
2401                 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2402                     try {
2403                         if (table == tab) {
2404                             @SuppressWarnings("unchecked")
2405                             Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2406                             table = nt;
2407                             sc = n - (n >>> 2);
2408                         }
2409                     } finally {
2410                         sizeCtl = sc;
2411                     }
2412                 }
2413             }
2414             else if (c <= sc || n >= MAXIMUM_CAPACITY)
2415                 break;
2416             else if (tab == table) {
2417                 int rs = resizeStamp(n);
2418                 if (U.compareAndSetInt(this, SIZECTL, sc,
2419                                         (rs << RESIZE_STAMP_SHIFT) + 2))
2420                     transfer(tab, null);
2421             }
2422         }
2423     }
2424 
2425     /**
2426      * Moves and/or copies the nodes in each bin to new table. See
2427      * above for explanation.
2428      */
transfer(Node<K,V>[] tab, Node<K,V>[] nextTab)2429     private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2430         int n = tab.length, stride;
2431         if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2432             stride = MIN_TRANSFER_STRIDE; // subdivide range
2433         if (nextTab == null) {            // initiating
2434             try {
2435                 @SuppressWarnings("unchecked")
2436                 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2437                 nextTab = nt;
2438             } catch (Throwable ex) {      // try to cope with OOME
2439                 sizeCtl = Integer.MAX_VALUE;
2440                 return;
2441             }
2442             nextTable = nextTab;
2443             transferIndex = n;
2444         }
2445         int nextn = nextTab.length;
2446         ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2447         boolean advance = true;
2448         boolean finishing = false; // to ensure sweep before committing nextTab
2449         for (int i = 0, bound = 0;;) {
2450             Node<K,V> f; int fh;
2451             while (advance) {
2452                 int nextIndex, nextBound;
2453                 if (--i >= bound || finishing)
2454                     advance = false;
2455                 else if ((nextIndex = transferIndex) <= 0) {
2456                     i = -1;
2457                     advance = false;
2458                 }
2459                 else if (U.compareAndSetInt
2460                          (this, TRANSFERINDEX, nextIndex,
2461                           nextBound = (nextIndex > stride ?
2462                                        nextIndex - stride : 0))) {
2463                     bound = nextBound;
2464                     i = nextIndex - 1;
2465                     advance = false;
2466                 }
2467             }
2468             if (i < 0 || i >= n || i + n >= nextn) {
2469                 int sc;
2470                 if (finishing) {
2471                     nextTable = null;
2472                     table = nextTab;
2473                     sizeCtl = (n << 1) - (n >>> 1);
2474                     return;
2475                 }
2476                 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2477                     if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2478                         return;
2479                     finishing = advance = true;
2480                     i = n; // recheck before commit
2481                 }
2482             }
2483             else if ((f = tabAt(tab, i)) == null)
2484                 advance = casTabAt(tab, i, null, fwd);
2485             else if ((fh = f.hash) == MOVED)
2486                 advance = true; // already processed
2487             else {
2488                 synchronized (f) {
2489                     if (tabAt(tab, i) == f) {
2490                         Node<K,V> ln, hn;
2491                         if (fh >= 0) {
2492                             int runBit = fh & n;
2493                             Node<K,V> lastRun = f;
2494                             for (Node<K,V> p = f.next; p != null; p = p.next) {
2495                                 int b = p.hash & n;
2496                                 if (b != runBit) {
2497                                     runBit = b;
2498                                     lastRun = p;
2499                                 }
2500                             }
2501                             if (runBit == 0) {
2502                                 ln = lastRun;
2503                                 hn = null;
2504                             }
2505                             else {
2506                                 hn = lastRun;
2507                                 ln = null;
2508                             }
2509                             for (Node<K,V> p = f; p != lastRun; p = p.next) {
2510                                 int ph = p.hash; K pk = p.key; V pv = p.val;
2511                                 if ((ph & n) == 0)
2512                                     ln = new Node<K,V>(ph, pk, pv, ln);
2513                                 else
2514                                     hn = new Node<K,V>(ph, pk, pv, hn);
2515                             }
2516                             setTabAt(nextTab, i, ln);
2517                             setTabAt(nextTab, i + n, hn);
2518                             setTabAt(tab, i, fwd);
2519                             advance = true;
2520                         }
2521                         else if (f instanceof TreeBin) {
2522                             TreeBin<K,V> t = (TreeBin<K,V>)f;
2523                             TreeNode<K,V> lo = null, loTail = null;
2524                             TreeNode<K,V> hi = null, hiTail = null;
2525                             int lc = 0, hc = 0;
2526                             for (Node<K,V> e = t.first; e != null; e = e.next) {
2527                                 int h = e.hash;
2528                                 TreeNode<K,V> p = new TreeNode<K,V>
2529                                     (h, e.key, e.val, null, null);
2530                                 if ((h & n) == 0) {
2531                                     if ((p.prev = loTail) == null)
2532                                         lo = p;
2533                                     else
2534                                         loTail.next = p;
2535                                     loTail = p;
2536                                     ++lc;
2537                                 }
2538                                 else {
2539                                     if ((p.prev = hiTail) == null)
2540                                         hi = p;
2541                                     else
2542                                         hiTail.next = p;
2543                                     hiTail = p;
2544                                     ++hc;
2545                                 }
2546                             }
2547                             ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2548                                 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2549                             hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2550                                 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2551                             setTabAt(nextTab, i, ln);
2552                             setTabAt(nextTab, i + n, hn);
2553                             setTabAt(tab, i, fwd);
2554                             advance = true;
2555                         }
2556                         else if (f instanceof ReservationNode)
2557                             throw new IllegalStateException("Recursive update");
2558                     }
2559                 }
2560             }
2561         }
2562     }
2563 
2564     /* ---------------- Counter support -------------- */
2565 
2566     /**
2567      * A padded cell for distributing counts.  Adapted from LongAdder
2568      * and Striped64.  See their internal docs for explanation.
2569      */
2570     @jdk.internal.vm.annotation.Contended
2571     static final class CounterCell {
2572         volatile long value;
CounterCell(long x)2573         CounterCell(long x) { value = x; }
2574     }
2575 
sumCount()2576     final long sumCount() {
2577         CounterCell[] cs = counterCells;
2578         long sum = baseCount;
2579         if (cs != null) {
2580             for (CounterCell c : cs)
2581                 if (c != null)
2582                     sum += c.value;
2583         }
2584         return sum;
2585     }
2586 
2587     // See LongAdder version for explanation
fullAddCount(long x, boolean wasUncontended)2588     private final void fullAddCount(long x, boolean wasUncontended) {
2589         int h;
2590         if ((h = ThreadLocalRandom.getProbe()) == 0) {
2591             ThreadLocalRandom.localInit();      // force initialization
2592             h = ThreadLocalRandom.getProbe();
2593             wasUncontended = true;
2594         }
2595         boolean collide = false;                // True if last slot nonempty
2596         for (;;) {
2597             CounterCell[] cs; CounterCell c; int n; long v;
2598             if ((cs = counterCells) != null && (n = cs.length) > 0) {
2599                 if ((c = cs[(n - 1) & h]) == null) {
2600                     if (cellsBusy == 0) {            // Try to attach new Cell
2601                         CounterCell r = new CounterCell(x); // Optimistic create
2602                         if (cellsBusy == 0 &&
2603                             U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2604                             boolean created = false;
2605                             try {               // Recheck under lock
2606                                 CounterCell[] rs; int m, j;
2607                                 if ((rs = counterCells) != null &&
2608                                     (m = rs.length) > 0 &&
2609                                     rs[j = (m - 1) & h] == null) {
2610                                     rs[j] = r;
2611                                     created = true;
2612                                 }
2613                             } finally {
2614                                 cellsBusy = 0;
2615                             }
2616                             if (created)
2617                                 break;
2618                             continue;           // Slot is now non-empty
2619                         }
2620                     }
2621                     collide = false;
2622                 }
2623                 else if (!wasUncontended)       // CAS already known to fail
2624                     wasUncontended = true;      // Continue after rehash
2625                 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2626                     break;
2627                 else if (counterCells != cs || n >= NCPU)
2628                     collide = false;            // At max size or stale
2629                 else if (!collide)
2630                     collide = true;
2631                 else if (cellsBusy == 0 &&
2632                          U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2633                     try {
2634                         if (counterCells == cs) // Expand table unless stale
2635                             counterCells = Arrays.copyOf(cs, n << 1);
2636                     } finally {
2637                         cellsBusy = 0;
2638                     }
2639                     collide = false;
2640                     continue;                   // Retry with expanded table
2641                 }
2642                 h = ThreadLocalRandom.advanceProbe(h);
2643             }
2644             else if (cellsBusy == 0 && counterCells == cs &&
2645                      U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2646                 boolean init = false;
2647                 try {                           // Initialize table
2648                     if (counterCells == cs) {
2649                         CounterCell[] rs = new CounterCell[2];
2650                         rs[h & 1] = new CounterCell(x);
2651                         counterCells = rs;
2652                         init = true;
2653                     }
2654                 } finally {
2655                     cellsBusy = 0;
2656                 }
2657                 if (init)
2658                     break;
2659             }
2660             else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2661                 break;                          // Fall back on using base
2662         }
2663     }
2664 
2665     /* ---------------- Conversion from/to TreeBins -------------- */
2666 
2667     /**
2668      * Replaces all linked nodes in bin at given index unless table is
2669      * too small, in which case resizes instead.
2670      */
treeifyBin(Node<K,V>[] tab, int index)2671     private final void treeifyBin(Node<K,V>[] tab, int index) {
2672         Node<K,V> b; int n;
2673         if (tab != null) {
2674             if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2675                 tryPresize(n << 1);
2676             else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2677                 synchronized (b) {
2678                     if (tabAt(tab, index) == b) {
2679                         TreeNode<K,V> hd = null, tl = null;
2680                         for (Node<K,V> e = b; e != null; e = e.next) {
2681                             TreeNode<K,V> p =
2682                                 new TreeNode<K,V>(e.hash, e.key, e.val,
2683                                                   null, null);
2684                             if ((p.prev = tl) == null)
2685                                 hd = p;
2686                             else
2687                                 tl.next = p;
2688                             tl = p;
2689                         }
2690                         setTabAt(tab, index, new TreeBin<K,V>(hd));
2691                     }
2692                 }
2693             }
2694         }
2695     }
2696 
2697     /**
2698      * Returns a list of non-TreeNodes replacing those in given list.
2699      */
untreeify(Node<K,V> b)2700     static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2701         Node<K,V> hd = null, tl = null;
2702         for (Node<K,V> q = b; q != null; q = q.next) {
2703             Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2704             if (tl == null)
2705                 hd = p;
2706             else
2707                 tl.next = p;
2708             tl = p;
2709         }
2710         return hd;
2711     }
2712 
2713     /* ---------------- TreeNodes -------------- */
2714 
2715     /**
2716      * Nodes for use in TreeBins.
2717      */
2718     static final class TreeNode<K,V> extends Node<K,V> {
2719         TreeNode<K,V> parent;  // red-black tree links
2720         TreeNode<K,V> left;
2721         TreeNode<K,V> right;
2722         TreeNode<K,V> prev;    // needed to unlink next upon deletion
2723         boolean red;
2724 
TreeNode(int hash, K key, V val, Node<K,V> next, TreeNode<K,V> parent)2725         TreeNode(int hash, K key, V val, Node<K,V> next,
2726                  TreeNode<K,V> parent) {
2727             super(hash, key, val, next);
2728             this.parent = parent;
2729         }
2730 
find(int h, Object k)2731         Node<K,V> find(int h, Object k) {
2732             return findTreeNode(h, k, null);
2733         }
2734 
2735         /**
2736          * Returns the TreeNode (or null if not found) for the given key
2737          * starting at given root.
2738          */
findTreeNode(int h, Object k, Class<?> kc)2739         final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2740             if (k != null) {
2741                 TreeNode<K,V> p = this;
2742                 do {
2743                     int ph, dir; K pk; TreeNode<K,V> q;
2744                     TreeNode<K,V> pl = p.left, pr = p.right;
2745                     if ((ph = p.hash) > h)
2746                         p = pl;
2747                     else if (ph < h)
2748                         p = pr;
2749                     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2750                         return p;
2751                     else if (pl == null)
2752                         p = pr;
2753                     else if (pr == null)
2754                         p = pl;
2755                     else if ((kc != null ||
2756                               (kc = comparableClassFor(k)) != null) &&
2757                              (dir = compareComparables(kc, k, pk)) != 0)
2758                         p = (dir < 0) ? pl : pr;
2759                     else if ((q = pr.findTreeNode(h, k, kc)) != null)
2760                         return q;
2761                     else
2762                         p = pl;
2763                 } while (p != null);
2764             }
2765             return null;
2766         }
2767     }
2768 
2769     /* ---------------- TreeBins -------------- */
2770 
2771     /**
2772      * TreeNodes used at the heads of bins. TreeBins do not hold user
2773      * keys or values, but instead point to list of TreeNodes and
2774      * their root. They also maintain a parasitic read-write lock
2775      * forcing writers (who hold bin lock) to wait for readers (who do
2776      * not) to complete before tree restructuring operations.
2777      */
2778     static final class TreeBin<K,V> extends Node<K,V> {
2779         TreeNode<K,V> root;
2780         volatile TreeNode<K,V> first;
2781         volatile Thread waiter;
2782         volatile int lockState;
2783         // values for lockState
2784         static final int WRITER = 1; // set while holding write lock
2785         static final int WAITER = 2; // set when waiting for write lock
2786         static final int READER = 4; // increment value for setting read lock
2787 
2788         /**
2789          * Tie-breaking utility for ordering insertions when equal
2790          * hashCodes and non-comparable. We don't require a total
2791          * order, just a consistent insertion rule to maintain
2792          * equivalence across rebalancings. Tie-breaking further than
2793          * necessary simplifies testing a bit.
2794          */
tieBreakOrder(Object a, Object b)2795         static int tieBreakOrder(Object a, Object b) {
2796             int d;
2797             if (a == null || b == null ||
2798                 (d = a.getClass().getName().
2799                  compareTo(b.getClass().getName())) == 0)
2800                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2801                      -1 : 1);
2802             return d;
2803         }
2804 
2805         /**
2806          * Creates bin with initial set of nodes headed by b.
2807          */
TreeBin(TreeNode<K,V> b)2808         TreeBin(TreeNode<K,V> b) {
2809             super(TREEBIN, null, null);
2810             this.first = b;
2811             TreeNode<K,V> r = null;
2812             for (TreeNode<K,V> x = b, next; x != null; x = next) {
2813                 next = (TreeNode<K,V>)x.next;
2814                 x.left = x.right = null;
2815                 if (r == null) {
2816                     x.parent = null;
2817                     x.red = false;
2818                     r = x;
2819                 }
2820                 else {
2821                     K k = x.key;
2822                     int h = x.hash;
2823                     Class<?> kc = null;
2824                     for (TreeNode<K,V> p = r;;) {
2825                         int dir, ph;
2826                         K pk = p.key;
2827                         if ((ph = p.hash) > h)
2828                             dir = -1;
2829                         else if (ph < h)
2830                             dir = 1;
2831                         else if ((kc == null &&
2832                                   (kc = comparableClassFor(k)) == null) ||
2833                                  (dir = compareComparables(kc, k, pk)) == 0)
2834                             dir = tieBreakOrder(k, pk);
2835                         TreeNode<K,V> xp = p;
2836                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
2837                             x.parent = xp;
2838                             if (dir <= 0)
2839                                 xp.left = x;
2840                             else
2841                                 xp.right = x;
2842                             r = balanceInsertion(r, x);
2843                             break;
2844                         }
2845                     }
2846                 }
2847             }
2848             this.root = r;
2849             assert checkInvariants(root);
2850         }
2851 
2852         /**
2853          * Acquires write lock for tree restructuring.
2854          */
lockRoot()2855         private final void lockRoot() {
2856             if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2857                 contendedLock(); // offload to separate method
2858         }
2859 
2860         /**
2861          * Releases write lock for tree restructuring.
2862          */
unlockRoot()2863         private final void unlockRoot() {
2864             lockState = 0;
2865         }
2866 
2867         /**
2868          * Possibly blocks awaiting root lock.
2869          */
contendedLock()2870         private final void contendedLock() {
2871             boolean waiting = false;
2872             for (int s;;) {
2873                 if (((s = lockState) & ~WAITER) == 0) {
2874                     if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2875                         if (waiting)
2876                             waiter = null;
2877                         return;
2878                     }
2879                 }
2880                 else if ((s & WAITER) == 0) {
2881                     if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2882                         waiting = true;
2883                         waiter = Thread.currentThread();
2884                     }
2885                 }
2886                 else if (waiting)
2887                     LockSupport.park(this);
2888             }
2889         }
2890 
2891         /**
2892          * Returns matching node or null if none. Tries to search
2893          * using tree comparisons from root, but continues linear
2894          * search when lock not available.
2895          */
find(int h, Object k)2896         final Node<K,V> find(int h, Object k) {
2897             if (k != null) {
2898                 for (Node<K,V> e = first; e != null; ) {
2899                     int s; K ek;
2900                     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2901                         if (e.hash == h &&
2902                             ((ek = e.key) == k || (ek != null && k.equals(ek))))
2903                             return e;
2904                         e = e.next;
2905                     }
2906                     else if (U.compareAndSetInt(this, LOCKSTATE, s,
2907                                                  s + READER)) {
2908                         TreeNode<K,V> r, p;
2909                         try {
2910                             p = ((r = root) == null ? null :
2911                                  r.findTreeNode(h, k, null));
2912                         } finally {
2913                             Thread w;
2914                             if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2915                                 (READER|WAITER) && (w = waiter) != null)
2916                                 LockSupport.unpark(w);
2917                         }
2918                         return p;
2919                     }
2920                 }
2921             }
2922             return null;
2923         }
2924 
2925         /**
2926          * Finds or adds a node.
2927          * @return null if added
2928          */
putTreeVal(int h, K k, V v)2929         final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2930             Class<?> kc = null;
2931             boolean searched = false;
2932             for (TreeNode<K,V> p = root;;) {
2933                 int dir, ph; K pk;
2934                 if (p == null) {
2935                     first = root = new TreeNode<K,V>(h, k, v, null, null);
2936                     break;
2937                 }
2938                 else if ((ph = p.hash) > h)
2939                     dir = -1;
2940                 else if (ph < h)
2941                     dir = 1;
2942                 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2943                     return p;
2944                 else if ((kc == null &&
2945                           (kc = comparableClassFor(k)) == null) ||
2946                          (dir = compareComparables(kc, k, pk)) == 0) {
2947                     if (!searched) {
2948                         TreeNode<K,V> q, ch;
2949                         searched = true;
2950                         if (((ch = p.left) != null &&
2951                              (q = ch.findTreeNode(h, k, kc)) != null) ||
2952                             ((ch = p.right) != null &&
2953                              (q = ch.findTreeNode(h, k, kc)) != null))
2954                             return q;
2955                     }
2956                     dir = tieBreakOrder(k, pk);
2957                 }
2958 
2959                 TreeNode<K,V> xp = p;
2960                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2961                     TreeNode<K,V> x, f = first;
2962                     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2963                     if (f != null)
2964                         f.prev = x;
2965                     if (dir <= 0)
2966                         xp.left = x;
2967                     else
2968                         xp.right = x;
2969                     if (!xp.red)
2970                         x.red = true;
2971                     else {
2972                         lockRoot();
2973                         try {
2974                             root = balanceInsertion(root, x);
2975                         } finally {
2976                             unlockRoot();
2977                         }
2978                     }
2979                     break;
2980                 }
2981             }
2982             assert checkInvariants(root);
2983             return null;
2984         }
2985 
2986         /**
2987          * Removes the given node, that must be present before this
2988          * call.  This is messier than typical red-black deletion code
2989          * because we cannot swap the contents of an interior node
2990          * with a leaf successor that is pinned by "next" pointers
2991          * that are accessible independently of lock. So instead we
2992          * swap the tree linkages.
2993          *
2994          * @return true if now too small, so should be untreeified
2995          */
removeTreeNode(TreeNode<K,V> p)2996         final boolean removeTreeNode(TreeNode<K,V> p) {
2997             TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2998             TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2999             TreeNode<K,V> r, rl;
3000             if (pred == null)
3001                 first = next;
3002             else
3003                 pred.next = next;
3004             if (next != null)
3005                 next.prev = pred;
3006             if (first == null) {
3007                 root = null;
3008                 return true;
3009             }
3010             if ((r = root) == null || r.right == null || // too small
3011                 (rl = r.left) == null || rl.left == null)
3012                 return true;
3013             lockRoot();
3014             try {
3015                 TreeNode<K,V> replacement;
3016                 TreeNode<K,V> pl = p.left;
3017                 TreeNode<K,V> pr = p.right;
3018                 if (pl != null && pr != null) {
3019                     TreeNode<K,V> s = pr, sl;
3020                     while ((sl = s.left) != null) // find successor
3021                         s = sl;
3022                     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
3023                     TreeNode<K,V> sr = s.right;
3024                     TreeNode<K,V> pp = p.parent;
3025                     if (s == pr) { // p was s's direct parent
3026                         p.parent = s;
3027                         s.right = p;
3028                     }
3029                     else {
3030                         TreeNode<K,V> sp = s.parent;
3031                         if ((p.parent = sp) != null) {
3032                             if (s == sp.left)
3033                                 sp.left = p;
3034                             else
3035                                 sp.right = p;
3036                         }
3037                         if ((s.right = pr) != null)
3038                             pr.parent = s;
3039                     }
3040                     p.left = null;
3041                     if ((p.right = sr) != null)
3042                         sr.parent = p;
3043                     if ((s.left = pl) != null)
3044                         pl.parent = s;
3045                     if ((s.parent = pp) == null)
3046                         r = s;
3047                     else if (p == pp.left)
3048                         pp.left = s;
3049                     else
3050                         pp.right = s;
3051                     if (sr != null)
3052                         replacement = sr;
3053                     else
3054                         replacement = p;
3055                 }
3056                 else if (pl != null)
3057                     replacement = pl;
3058                 else if (pr != null)
3059                     replacement = pr;
3060                 else
3061                     replacement = p;
3062                 if (replacement != p) {
3063                     TreeNode<K,V> pp = replacement.parent = p.parent;
3064                     if (pp == null)
3065                         r = replacement;
3066                     else if (p == pp.left)
3067                         pp.left = replacement;
3068                     else
3069                         pp.right = replacement;
3070                     p.left = p.right = p.parent = null;
3071                 }
3072 
3073                 root = (p.red) ? r : balanceDeletion(r, replacement);
3074 
3075                 if (p == replacement) {  // detach pointers
3076                     TreeNode<K,V> pp;
3077                     if ((pp = p.parent) != null) {
3078                         if (p == pp.left)
3079                             pp.left = null;
3080                         else if (p == pp.right)
3081                             pp.right = null;
3082                         p.parent = null;
3083                     }
3084                 }
3085             } finally {
3086                 unlockRoot();
3087             }
3088             assert checkInvariants(root);
3089             return false;
3090         }
3091 
3092         /* ------------------------------------------------------------ */
3093         // Red-black tree methods, all adapted from CLR
3094 
rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p)3095         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3096                                               TreeNode<K,V> p) {
3097             TreeNode<K,V> r, pp, rl;
3098             if (p != null && (r = p.right) != null) {
3099                 if ((rl = p.right = r.left) != null)
3100                     rl.parent = p;
3101                 if ((pp = r.parent = p.parent) == null)
3102                     (root = r).red = false;
3103                 else if (pp.left == p)
3104                     pp.left = r;
3105                 else
3106                     pp.right = r;
3107                 r.left = p;
3108                 p.parent = r;
3109             }
3110             return root;
3111         }
3112 
rotateRight(TreeNode<K,V> root, TreeNode<K,V> p)3113         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3114                                                TreeNode<K,V> p) {
3115             TreeNode<K,V> l, pp, lr;
3116             if (p != null && (l = p.left) != null) {
3117                 if ((lr = p.left = l.right) != null)
3118                     lr.parent = p;
3119                 if ((pp = l.parent = p.parent) == null)
3120                     (root = l).red = false;
3121                 else if (pp.right == p)
3122                     pp.right = l;
3123                 else
3124                     pp.left = l;
3125                 l.right = p;
3126                 p.parent = l;
3127             }
3128             return root;
3129         }
3130 
balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x)3131         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3132                                                     TreeNode<K,V> x) {
3133             x.red = true;
3134             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3135                 if ((xp = x.parent) == null) {
3136                     x.red = false;
3137                     return x;
3138                 }
3139                 else if (!xp.red || (xpp = xp.parent) == null)
3140                     return root;
3141                 if (xp == (xppl = xpp.left)) {
3142                     if ((xppr = xpp.right) != null && xppr.red) {
3143                         xppr.red = false;
3144                         xp.red = false;
3145                         xpp.red = true;
3146                         x = xpp;
3147                     }
3148                     else {
3149                         if (x == xp.right) {
3150                             root = rotateLeft(root, x = xp);
3151                             xpp = (xp = x.parent) == null ? null : xp.parent;
3152                         }
3153                         if (xp != null) {
3154                             xp.red = false;
3155                             if (xpp != null) {
3156                                 xpp.red = true;
3157                                 root = rotateRight(root, xpp);
3158                             }
3159                         }
3160                     }
3161                 }
3162                 else {
3163                     if (xppl != null && xppl.red) {
3164                         xppl.red = false;
3165                         xp.red = false;
3166                         xpp.red = true;
3167                         x = xpp;
3168                     }
3169                     else {
3170                         if (x == xp.left) {
3171                             root = rotateRight(root, x = xp);
3172                             xpp = (xp = x.parent) == null ? null : xp.parent;
3173                         }
3174                         if (xp != null) {
3175                             xp.red = false;
3176                             if (xpp != null) {
3177                                 xpp.red = true;
3178                                 root = rotateLeft(root, xpp);
3179                             }
3180                         }
3181                     }
3182                 }
3183             }
3184         }
3185 
balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x)3186         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3187                                                    TreeNode<K,V> x) {
3188             for (TreeNode<K,V> xp, xpl, xpr;;) {
3189                 if (x == null || x == root)
3190                     return root;
3191                 else if ((xp = x.parent) == null) {
3192                     x.red = false;
3193                     return x;
3194                 }
3195                 else if (x.red) {
3196                     x.red = false;
3197                     return root;
3198                 }
3199                 else if ((xpl = xp.left) == x) {
3200                     if ((xpr = xp.right) != null && xpr.red) {
3201                         xpr.red = false;
3202                         xp.red = true;
3203                         root = rotateLeft(root, xp);
3204                         xpr = (xp = x.parent) == null ? null : xp.right;
3205                     }
3206                     if (xpr == null)
3207                         x = xp;
3208                     else {
3209                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3210                         if ((sr == null || !sr.red) &&
3211                             (sl == null || !sl.red)) {
3212                             xpr.red = true;
3213                             x = xp;
3214                         }
3215                         else {
3216                             if (sr == null || !sr.red) {
3217                                 if (sl != null)
3218                                     sl.red = false;
3219                                 xpr.red = true;
3220                                 root = rotateRight(root, xpr);
3221                                 xpr = (xp = x.parent) == null ?
3222                                     null : xp.right;
3223                             }
3224                             if (xpr != null) {
3225                                 xpr.red = (xp == null) ? false : xp.red;
3226                                 if ((sr = xpr.right) != null)
3227                                     sr.red = false;
3228                             }
3229                             if (xp != null) {
3230                                 xp.red = false;
3231                                 root = rotateLeft(root, xp);
3232                             }
3233                             x = root;
3234                         }
3235                     }
3236                 }
3237                 else { // symmetric
3238                     if (xpl != null && xpl.red) {
3239                         xpl.red = false;
3240                         xp.red = true;
3241                         root = rotateRight(root, xp);
3242                         xpl = (xp = x.parent) == null ? null : xp.left;
3243                     }
3244                     if (xpl == null)
3245                         x = xp;
3246                     else {
3247                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3248                         if ((sl == null || !sl.red) &&
3249                             (sr == null || !sr.red)) {
3250                             xpl.red = true;
3251                             x = xp;
3252                         }
3253                         else {
3254                             if (sl == null || !sl.red) {
3255                                 if (sr != null)
3256                                     sr.red = false;
3257                                 xpl.red = true;
3258                                 root = rotateLeft(root, xpl);
3259                                 xpl = (xp = x.parent) == null ?
3260                                     null : xp.left;
3261                             }
3262                             if (xpl != null) {
3263                                 xpl.red = (xp == null) ? false : xp.red;
3264                                 if ((sl = xpl.left) != null)
3265                                     sl.red = false;
3266                             }
3267                             if (xp != null) {
3268                                 xp.red = false;
3269                                 root = rotateRight(root, xp);
3270                             }
3271                             x = root;
3272                         }
3273                     }
3274                 }
3275             }
3276         }
3277 
3278         /**
3279          * Checks invariants recursively for the tree of Nodes rooted at t.
3280          */
checkInvariants(TreeNode<K,V> t)3281         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3282             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3283                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3284             if (tb != null && tb.next != t)
3285                 return false;
3286             if (tn != null && tn.prev != t)
3287                 return false;
3288             if (tp != null && t != tp.left && t != tp.right)
3289                 return false;
3290             if (tl != null && (tl.parent != t || tl.hash > t.hash))
3291                 return false;
3292             if (tr != null && (tr.parent != t || tr.hash < t.hash))
3293                 return false;
3294             if (t.red && tl != null && tl.red && tr != null && tr.red)
3295                 return false;
3296             if (tl != null && !checkInvariants(tl))
3297                 return false;
3298             if (tr != null && !checkInvariants(tr))
3299                 return false;
3300             return true;
3301         }
3302 
3303         private static final long LOCKSTATE
3304             = U.objectFieldOffset(TreeBin.class, "lockState");
3305     }
3306 
3307     /* ----------------Table Traversal -------------- */
3308 
3309     /**
3310      * Records the table, its length, and current traversal index for a
3311      * traverser that must process a region of a forwarded table before
3312      * proceeding with current table.
3313      */
3314     static final class TableStack<K,V> {
3315         int length;
3316         int index;
3317         Node<K,V>[] tab;
3318         TableStack<K,V> next;
3319     }
3320 
3321     /**
3322      * Encapsulates traversal for methods such as containsValue; also
3323      * serves as a base class for other iterators and spliterators.
3324      *
3325      * Method advance visits once each still-valid node that was
3326      * reachable upon iterator construction. It might miss some that
3327      * were added to a bin after the bin was visited, which is OK wrt
3328      * consistency guarantees. Maintaining this property in the face
3329      * of possible ongoing resizes requires a fair amount of
3330      * bookkeeping state that is difficult to optimize away amidst
3331      * volatile accesses.  Even so, traversal maintains reasonable
3332      * throughput.
3333      *
3334      * Normally, iteration proceeds bin-by-bin traversing lists.
3335      * However, if the table has been resized, then all future steps
3336      * must traverse both the bin at the current index as well as at
3337      * (index + baseSize); and so on for further resizings. To
3338      * paranoically cope with potential sharing by users of iterators
3339      * across threads, iteration terminates if a bounds checks fails
3340      * for a table read.
3341      */
3342     static class Traverser<K,V> {
3343         Node<K,V>[] tab;        // current table; updated if resized
3344         Node<K,V> next;         // the next entry to use
3345         TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3346         int index;              // index of bin to use next
3347         int baseIndex;          // current index of initial table
3348         int baseLimit;          // index bound for initial table
3349         final int baseSize;     // initial table size
3350 
Traverser(Node<K,V>[] tab, int size, int index, int limit)3351         Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3352             this.tab = tab;
3353             this.baseSize = size;
3354             this.baseIndex = this.index = index;
3355             this.baseLimit = limit;
3356             this.next = null;
3357         }
3358 
3359         /**
3360          * Advances if possible, returning next valid node, or null if none.
3361          */
advance()3362         final Node<K,V> advance() {
3363             Node<K,V> e;
3364             if ((e = next) != null)
3365                 e = e.next;
3366             for (;;) {
3367                 Node<K,V>[] t; int i, n;  // must use locals in checks
3368                 if (e != null)
3369                     return next = e;
3370                 if (baseIndex >= baseLimit || (t = tab) == null ||
3371                     (n = t.length) <= (i = index) || i < 0)
3372                     return next = null;
3373                 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3374                     if (e instanceof ForwardingNode) {
3375                         tab = ((ForwardingNode<K,V>)e).nextTable;
3376                         e = null;
3377                         pushState(t, i, n);
3378                         continue;
3379                     }
3380                     else if (e instanceof TreeBin)
3381                         e = ((TreeBin<K,V>)e).first;
3382                     else
3383                         e = null;
3384                 }
3385                 if (stack != null)
3386                     recoverState(n);
3387                 else if ((index = i + baseSize) >= n)
3388                     index = ++baseIndex; // visit upper slots if present
3389             }
3390         }
3391 
3392         /**
3393          * Saves traversal state upon encountering a forwarding node.
3394          */
pushState(Node<K,V>[] t, int i, int n)3395         private void pushState(Node<K,V>[] t, int i, int n) {
3396             TableStack<K,V> s = spare;  // reuse if possible
3397             if (s != null)
3398                 spare = s.next;
3399             else
3400                 s = new TableStack<K,V>();
3401             s.tab = t;
3402             s.length = n;
3403             s.index = i;
3404             s.next = stack;
3405             stack = s;
3406         }
3407 
3408         /**
3409          * Possibly pops traversal state.
3410          *
3411          * @param n length of current table
3412          */
recoverState(int n)3413         private void recoverState(int n) {
3414             TableStack<K,V> s; int len;
3415             while ((s = stack) != null && (index += (len = s.length)) >= n) {
3416                 n = len;
3417                 index = s.index;
3418                 tab = s.tab;
3419                 s.tab = null;
3420                 TableStack<K,V> next = s.next;
3421                 s.next = spare; // save for reuse
3422                 stack = next;
3423                 spare = s;
3424             }
3425             if (s == null && (index += baseSize) >= n)
3426                 index = ++baseIndex;
3427         }
3428     }
3429 
3430     /**
3431      * Base of key, value, and entry Iterators. Adds fields to
3432      * Traverser to support iterator.remove.
3433      */
3434     static class BaseIterator<K,V> extends Traverser<K,V> {
3435         final ConcurrentHashMap<K,V> map;
3436         Node<K,V> lastReturned;
BaseIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3437         BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3438                     ConcurrentHashMap<K,V> map) {
3439             super(tab, size, index, limit);
3440             this.map = map;
3441             advance();
3442         }
3443 
hasNext()3444         public final boolean hasNext() { return next != null; }
hasMoreElements()3445         public final boolean hasMoreElements() { return next != null; }
3446 
remove()3447         public final void remove() {
3448             Node<K,V> p;
3449             if ((p = lastReturned) == null)
3450                 throw new IllegalStateException();
3451             lastReturned = null;
3452             map.replaceNode(p.key, null, null);
3453         }
3454     }
3455 
3456     static final class KeyIterator<K,V> extends BaseIterator<K,V>
3457         implements Iterator<K>, Enumeration<K> {
KeyIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3458         KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3459                     ConcurrentHashMap<K,V> map) {
3460             super(tab, size, index, limit, map);
3461         }
3462 
next()3463         public final K next() {
3464             Node<K,V> p;
3465             if ((p = next) == null)
3466                 throw new NoSuchElementException();
3467             K k = p.key;
3468             lastReturned = p;
3469             advance();
3470             return k;
3471         }
3472 
nextElement()3473         public final K nextElement() { return next(); }
3474     }
3475 
3476     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3477         implements Iterator<V>, Enumeration<V> {
ValueIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3478         ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3479                       ConcurrentHashMap<K,V> map) {
3480             super(tab, size, index, limit, map);
3481         }
3482 
next()3483         public final V next() {
3484             Node<K,V> p;
3485             if ((p = next) == null)
3486                 throw new NoSuchElementException();
3487             V v = p.val;
3488             lastReturned = p;
3489             advance();
3490             return v;
3491         }
3492 
nextElement()3493         public final V nextElement() { return next(); }
3494     }
3495 
3496     static final class EntryIterator<K,V> extends BaseIterator<K,V>
3497         implements Iterator<Map.Entry<K,V>> {
EntryIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3498         EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3499                       ConcurrentHashMap<K,V> map) {
3500             super(tab, size, index, limit, map);
3501         }
3502 
next()3503         public final Map.Entry<K,V> next() {
3504             Node<K,V> p;
3505             if ((p = next) == null)
3506                 throw new NoSuchElementException();
3507             K k = p.key;
3508             V v = p.val;
3509             lastReturned = p;
3510             advance();
3511             return new MapEntry<K,V>(k, v, map);
3512         }
3513     }
3514 
3515     /**
3516      * Exported Entry for EntryIterator.
3517      */
3518     static final class MapEntry<K,V> implements Map.Entry<K,V> {
3519         final K key; // non-null
3520         V val;       // non-null
3521         final ConcurrentHashMap<K,V> map;
MapEntry(K key, V val, ConcurrentHashMap<K,V> map)3522         MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3523             this.key = key;
3524             this.val = val;
3525             this.map = map;
3526         }
getKey()3527         public K getKey()        { return key; }
getValue()3528         public V getValue()      { return val; }
hashCode()3529         public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
toString()3530         public String toString() {
3531             return Helpers.mapEntryToString(key, val);
3532         }
3533 
equals(Object o)3534         public boolean equals(Object o) {
3535             Object k, v; Map.Entry<?,?> e;
3536             return ((o instanceof Map.Entry) &&
3537                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3538                     (v = e.getValue()) != null &&
3539                     (k == key || k.equals(key)) &&
3540                     (v == val || v.equals(val)));
3541         }
3542 
3543         /**
3544          * Sets our entry's value and writes through to the map. The
3545          * value to return is somewhat arbitrary here. Since we do not
3546          * necessarily track asynchronous changes, the most recent
3547          * "previous" value could be different from what we return (or
3548          * could even have been removed, in which case the put will
3549          * re-establish). We do not and cannot guarantee more.
3550          */
setValue(V value)3551         public V setValue(V value) {
3552             if (value == null) throw new NullPointerException();
3553             V v = val;
3554             val = value;
3555             map.put(key, value);
3556             return v;
3557         }
3558     }
3559 
3560     static final class KeySpliterator<K,V> extends Traverser<K,V>
3561         implements Spliterator<K> {
3562         long est;               // size estimate
KeySpliterator(Node<K,V>[] tab, int size, int index, int limit, long est)3563         KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3564                        long est) {
3565             super(tab, size, index, limit);
3566             this.est = est;
3567         }
3568 
trySplit()3569         public KeySpliterator<K,V> trySplit() {
3570             int i, f, h;
3571             return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3572                 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3573                                         f, est >>>= 1);
3574         }
3575 
forEachRemaining(Consumer<? super K> action)3576         public void forEachRemaining(Consumer<? super K> action) {
3577             if (action == null) throw new NullPointerException();
3578             for (Node<K,V> p; (p = advance()) != null;)
3579                 action.accept(p.key);
3580         }
3581 
tryAdvance(Consumer<? super K> action)3582         public boolean tryAdvance(Consumer<? super K> action) {
3583             if (action == null) throw new NullPointerException();
3584             Node<K,V> p;
3585             if ((p = advance()) == null)
3586                 return false;
3587             action.accept(p.key);
3588             return true;
3589         }
3590 
estimateSize()3591         public long estimateSize() { return est; }
3592 
characteristics()3593         public int characteristics() {
3594             return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3595                 Spliterator.NONNULL;
3596         }
3597     }
3598 
3599     static final class ValueSpliterator<K,V> extends Traverser<K,V>
3600         implements Spliterator<V> {
3601         long est;               // size estimate
ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit, long est)3602         ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3603                          long est) {
3604             super(tab, size, index, limit);
3605             this.est = est;
3606         }
3607 
trySplit()3608         public ValueSpliterator<K,V> trySplit() {
3609             int i, f, h;
3610             return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3611                 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3612                                           f, est >>>= 1);
3613         }
3614 
forEachRemaining(Consumer<? super V> action)3615         public void forEachRemaining(Consumer<? super V> action) {
3616             if (action == null) throw new NullPointerException();
3617             for (Node<K,V> p; (p = advance()) != null;)
3618                 action.accept(p.val);
3619         }
3620 
tryAdvance(Consumer<? super V> action)3621         public boolean tryAdvance(Consumer<? super V> action) {
3622             if (action == null) throw new NullPointerException();
3623             Node<K,V> p;
3624             if ((p = advance()) == null)
3625                 return false;
3626             action.accept(p.val);
3627             return true;
3628         }
3629 
estimateSize()3630         public long estimateSize() { return est; }
3631 
characteristics()3632         public int characteristics() {
3633             return Spliterator.CONCURRENT | Spliterator.NONNULL;
3634         }
3635     }
3636 
3637     static final class EntrySpliterator<K,V> extends Traverser<K,V>
3638         implements Spliterator<Map.Entry<K,V>> {
3639         final ConcurrentHashMap<K,V> map; // To export MapEntry
3640         long est;               // size estimate
EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit, long est, ConcurrentHashMap<K,V> map)3641         EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3642                          long est, ConcurrentHashMap<K,V> map) {
3643             super(tab, size, index, limit);
3644             this.map = map;
3645             this.est = est;
3646         }
3647 
trySplit()3648         public EntrySpliterator<K,V> trySplit() {
3649             int i, f, h;
3650             return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3651                 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3652                                           f, est >>>= 1, map);
3653         }
3654 
forEachRemaining(Consumer<? super Map.Entry<K,V>> action)3655         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3656             if (action == null) throw new NullPointerException();
3657             for (Node<K,V> p; (p = advance()) != null; )
3658                 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3659         }
3660 
tryAdvance(Consumer<? super Map.Entry<K,V>> action)3661         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3662             if (action == null) throw new NullPointerException();
3663             Node<K,V> p;
3664             if ((p = advance()) == null)
3665                 return false;
3666             action.accept(new MapEntry<K,V>(p.key, p.val, map));
3667             return true;
3668         }
3669 
estimateSize()3670         public long estimateSize() { return est; }
3671 
characteristics()3672         public int characteristics() {
3673             return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3674                 Spliterator.NONNULL;
3675         }
3676     }
3677 
3678     // Parallel bulk operations
3679 
3680     /**
3681      * Computes initial batch value for bulk tasks. The returned value
3682      * is approximately exp2 of the number of times (minus one) to
3683      * split task by two before executing leaf action. This value is
3684      * faster to compute and more convenient to use as a guide to
3685      * splitting than is the depth, since it is used while dividing by
3686      * two anyway.
3687      */
batchFor(long b)3688     final int batchFor(long b) {
3689         long n;
3690         if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3691             return 0;
3692         int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3693         return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3694     }
3695 
3696     /**
3697      * Performs the given action for each (key, value).
3698      *
3699      * @param parallelismThreshold the (estimated) number of elements
3700      * needed for this operation to be executed in parallel
3701      * @param action the action
3702      * @since 1.8
3703      */
forEach(long parallelismThreshold, BiConsumer<? super K,? super V> action)3704     public void forEach(long parallelismThreshold,
3705                         BiConsumer<? super K,? super V> action) {
3706         if (action == null) throw new NullPointerException();
3707         new ForEachMappingTask<K,V>
3708             (null, batchFor(parallelismThreshold), 0, 0, table,
3709              action).invoke();
3710     }
3711 
3712     /**
3713      * Performs the given action for each non-null transformation
3714      * of each (key, value).
3715      *
3716      * @param parallelismThreshold the (estimated) number of elements
3717      * needed for this operation to be executed in parallel
3718      * @param transformer a function returning the transformation
3719      * for an element, or null if there is no transformation (in
3720      * which case the action is not applied)
3721      * @param action the action
3722      * @param <U> the return type of the transformer
3723      * @since 1.8
3724      */
forEach(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action)3725     public <U> void forEach(long parallelismThreshold,
3726                             BiFunction<? super K, ? super V, ? extends U> transformer,
3727                             Consumer<? super U> action) {
3728         if (transformer == null || action == null)
3729             throw new NullPointerException();
3730         new ForEachTransformedMappingTask<K,V,U>
3731             (null, batchFor(parallelismThreshold), 0, 0, table,
3732              transformer, action).invoke();
3733     }
3734 
3735     /**
3736      * Returns a non-null result from applying the given search
3737      * function on each (key, value), or null if none.  Upon
3738      * success, further element processing is suppressed and the
3739      * results of any other parallel invocations of the search
3740      * function are ignored.
3741      *
3742      * @param parallelismThreshold the (estimated) number of elements
3743      * needed for this operation to be executed in parallel
3744      * @param searchFunction a function returning a non-null
3745      * result on success, else null
3746      * @param <U> the return type of the search function
3747      * @return a non-null result from applying the given search
3748      * function on each (key, value), or null if none
3749      * @since 1.8
3750      */
search(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> searchFunction)3751     public <U> U search(long parallelismThreshold,
3752                         BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3753         if (searchFunction == null) throw new NullPointerException();
3754         return new SearchMappingsTask<K,V,U>
3755             (null, batchFor(parallelismThreshold), 0, 0, table,
3756              searchFunction, new AtomicReference<U>()).invoke();
3757     }
3758 
3759     /**
3760      * Returns the result of accumulating the given transformation
3761      * of all (key, value) pairs using the given reducer to
3762      * combine values, or null if none.
3763      *
3764      * @param parallelismThreshold the (estimated) number of elements
3765      * needed for this operation to be executed in parallel
3766      * @param transformer a function returning the transformation
3767      * for an element, or null if there is no transformation (in
3768      * which case it is not combined)
3769      * @param reducer a commutative associative combining function
3770      * @param <U> the return type of the transformer
3771      * @return the result of accumulating the given transformation
3772      * of all (key, value) pairs
3773      * @since 1.8
3774      */
reduce(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)3775     public <U> U reduce(long parallelismThreshold,
3776                         BiFunction<? super K, ? super V, ? extends U> transformer,
3777                         BiFunction<? super U, ? super U, ? extends U> reducer) {
3778         if (transformer == null || reducer == null)
3779             throw new NullPointerException();
3780         return new MapReduceMappingsTask<K,V,U>
3781             (null, batchFor(parallelismThreshold), 0, 0, table,
3782              null, transformer, reducer).invoke();
3783     }
3784 
3785     /**
3786      * Returns the result of accumulating the given transformation
3787      * of all (key, value) pairs using the given reducer to
3788      * combine values, and the given basis as an identity value.
3789      *
3790      * @param parallelismThreshold the (estimated) number of elements
3791      * needed for this operation to be executed in parallel
3792      * @param transformer a function returning the transformation
3793      * for an element
3794      * @param basis the identity (initial default value) for the reduction
3795      * @param reducer a commutative associative combining function
3796      * @return the result of accumulating the given transformation
3797      * of all (key, value) pairs
3798      * @since 1.8
3799      */
reduceToDouble(long parallelismThreshold, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer)3800     public double reduceToDouble(long parallelismThreshold,
3801                                  ToDoubleBiFunction<? super K, ? super V> transformer,
3802                                  double basis,
3803                                  DoubleBinaryOperator reducer) {
3804         if (transformer == null || reducer == null)
3805             throw new NullPointerException();
3806         return new MapReduceMappingsToDoubleTask<K,V>
3807             (null, batchFor(parallelismThreshold), 0, 0, table,
3808              null, transformer, basis, reducer).invoke();
3809     }
3810 
3811     /**
3812      * Returns the result of accumulating the given transformation
3813      * of all (key, value) pairs using the given reducer to
3814      * combine values, and the given basis as an identity value.
3815      *
3816      * @param parallelismThreshold the (estimated) number of elements
3817      * needed for this operation to be executed in parallel
3818      * @param transformer a function returning the transformation
3819      * for an element
3820      * @param basis the identity (initial default value) for the reduction
3821      * @param reducer a commutative associative combining function
3822      * @return the result of accumulating the given transformation
3823      * of all (key, value) pairs
3824      * @since 1.8
3825      */
reduceToLong(long parallelismThreshold, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer)3826     public long reduceToLong(long parallelismThreshold,
3827                              ToLongBiFunction<? super K, ? super V> transformer,
3828                              long basis,
3829                              LongBinaryOperator reducer) {
3830         if (transformer == null || reducer == null)
3831             throw new NullPointerException();
3832         return new MapReduceMappingsToLongTask<K,V>
3833             (null, batchFor(parallelismThreshold), 0, 0, table,
3834              null, transformer, basis, reducer).invoke();
3835     }
3836 
3837     /**
3838      * Returns the result of accumulating the given transformation
3839      * of all (key, value) pairs using the given reducer to
3840      * combine values, and the given basis as an identity value.
3841      *
3842      * @param parallelismThreshold the (estimated) number of elements
3843      * needed for this operation to be executed in parallel
3844      * @param transformer a function returning the transformation
3845      * for an element
3846      * @param basis the identity (initial default value) for the reduction
3847      * @param reducer a commutative associative combining function
3848      * @return the result of accumulating the given transformation
3849      * of all (key, value) pairs
3850      * @since 1.8
3851      */
reduceToInt(long parallelismThreshold, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer)3852     public int reduceToInt(long parallelismThreshold,
3853                            ToIntBiFunction<? super K, ? super V> transformer,
3854                            int basis,
3855                            IntBinaryOperator reducer) {
3856         if (transformer == null || reducer == null)
3857             throw new NullPointerException();
3858         return new MapReduceMappingsToIntTask<K,V>
3859             (null, batchFor(parallelismThreshold), 0, 0, table,
3860              null, transformer, basis, reducer).invoke();
3861     }
3862 
3863     /**
3864      * Performs the given action for each key.
3865      *
3866      * @param parallelismThreshold the (estimated) number of elements
3867      * needed for this operation to be executed in parallel
3868      * @param action the action
3869      * @since 1.8
3870      */
forEachKey(long parallelismThreshold, Consumer<? super K> action)3871     public void forEachKey(long parallelismThreshold,
3872                            Consumer<? super K> action) {
3873         if (action == null) throw new NullPointerException();
3874         new ForEachKeyTask<K,V>
3875             (null, batchFor(parallelismThreshold), 0, 0, table,
3876              action).invoke();
3877     }
3878 
3879     /**
3880      * Performs the given action for each non-null transformation
3881      * of each key.
3882      *
3883      * @param parallelismThreshold the (estimated) number of elements
3884      * needed for this operation to be executed in parallel
3885      * @param transformer a function returning the transformation
3886      * for an element, or null if there is no transformation (in
3887      * which case the action is not applied)
3888      * @param action the action
3889      * @param <U> the return type of the transformer
3890      * @since 1.8
3891      */
forEachKey(long parallelismThreshold, Function<? super K, ? extends U> transformer, Consumer<? super U> action)3892     public <U> void forEachKey(long parallelismThreshold,
3893                                Function<? super K, ? extends U> transformer,
3894                                Consumer<? super U> action) {
3895         if (transformer == null || action == null)
3896             throw new NullPointerException();
3897         new ForEachTransformedKeyTask<K,V,U>
3898             (null, batchFor(parallelismThreshold), 0, 0, table,
3899              transformer, action).invoke();
3900     }
3901 
3902     /**
3903      * Returns a non-null result from applying the given search
3904      * function on each key, or null if none. Upon success,
3905      * further element processing is suppressed and the results of
3906      * any other parallel invocations of the search function are
3907      * ignored.
3908      *
3909      * @param parallelismThreshold the (estimated) number of elements
3910      * needed for this operation to be executed in parallel
3911      * @param searchFunction a function returning a non-null
3912      * result on success, else null
3913      * @param <U> the return type of the search function
3914      * @return a non-null result from applying the given search
3915      * function on each key, or null if none
3916      * @since 1.8
3917      */
searchKeys(long parallelismThreshold, Function<? super K, ? extends U> searchFunction)3918     public <U> U searchKeys(long parallelismThreshold,
3919                             Function<? super K, ? extends U> searchFunction) {
3920         if (searchFunction == null) throw new NullPointerException();
3921         return new SearchKeysTask<K,V,U>
3922             (null, batchFor(parallelismThreshold), 0, 0, table,
3923              searchFunction, new AtomicReference<U>()).invoke();
3924     }
3925 
3926     /**
3927      * Returns the result of accumulating all keys using the given
3928      * reducer to combine values, or null if none.
3929      *
3930      * @param parallelismThreshold the (estimated) number of elements
3931      * needed for this operation to be executed in parallel
3932      * @param reducer a commutative associative combining function
3933      * @return the result of accumulating all keys using the given
3934      * reducer to combine values, or null if none
3935      * @since 1.8
3936      */
reduceKeys(long parallelismThreshold, BiFunction<? super K, ? super K, ? extends K> reducer)3937     public K reduceKeys(long parallelismThreshold,
3938                         BiFunction<? super K, ? super K, ? extends K> reducer) {
3939         if (reducer == null) throw new NullPointerException();
3940         return new ReduceKeysTask<K,V>
3941             (null, batchFor(parallelismThreshold), 0, 0, table,
3942              null, reducer).invoke();
3943     }
3944 
3945     /**
3946      * Returns the result of accumulating the given transformation
3947      * of all keys using the given reducer to combine values, or
3948      * null if none.
3949      *
3950      * @param parallelismThreshold the (estimated) number of elements
3951      * needed for this operation to be executed in parallel
3952      * @param transformer a function returning the transformation
3953      * for an element, or null if there is no transformation (in
3954      * which case it is not combined)
3955      * @param reducer a commutative associative combining function
3956      * @param <U> the return type of the transformer
3957      * @return the result of accumulating the given transformation
3958      * of all keys
3959      * @since 1.8
3960      */
reduceKeys(long parallelismThreshold, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)3961     public <U> U reduceKeys(long parallelismThreshold,
3962                             Function<? super K, ? extends U> transformer,
3963          BiFunction<? super U, ? super U, ? extends U> reducer) {
3964         if (transformer == null || reducer == null)
3965             throw new NullPointerException();
3966         return new MapReduceKeysTask<K,V,U>
3967             (null, batchFor(parallelismThreshold), 0, 0, table,
3968              null, transformer, reducer).invoke();
3969     }
3970 
3971     /**
3972      * Returns the result of accumulating the given transformation
3973      * of all keys using the given reducer to combine values, and
3974      * the given basis as an identity value.
3975      *
3976      * @param parallelismThreshold the (estimated) number of elements
3977      * needed for this operation to be executed in parallel
3978      * @param transformer a function returning the transformation
3979      * for an element
3980      * @param basis the identity (initial default value) for the reduction
3981      * @param reducer a commutative associative combining function
3982      * @return the result of accumulating the given transformation
3983      * of all keys
3984      * @since 1.8
3985      */
reduceKeysToDouble(long parallelismThreshold, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer)3986     public double reduceKeysToDouble(long parallelismThreshold,
3987                                      ToDoubleFunction<? super K> transformer,
3988                                      double basis,
3989                                      DoubleBinaryOperator reducer) {
3990         if (transformer == null || reducer == null)
3991             throw new NullPointerException();
3992         return new MapReduceKeysToDoubleTask<K,V>
3993             (null, batchFor(parallelismThreshold), 0, 0, table,
3994              null, transformer, basis, reducer).invoke();
3995     }
3996 
3997     /**
3998      * Returns the result of accumulating the given transformation
3999      * of all keys using the given reducer to combine values, and
4000      * the given basis as an identity value.
4001      *
4002      * @param parallelismThreshold the (estimated) number of elements
4003      * needed for this operation to be executed in parallel
4004      * @param transformer a function returning the transformation
4005      * for an element
4006      * @param basis the identity (initial default value) for the reduction
4007      * @param reducer a commutative associative combining function
4008      * @return the result of accumulating the given transformation
4009      * of all keys
4010      * @since 1.8
4011      */
reduceKeysToLong(long parallelismThreshold, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer)4012     public long reduceKeysToLong(long parallelismThreshold,
4013                                  ToLongFunction<? super K> transformer,
4014                                  long basis,
4015                                  LongBinaryOperator reducer) {
4016         if (transformer == null || reducer == null)
4017             throw new NullPointerException();
4018         return new MapReduceKeysToLongTask<K,V>
4019             (null, batchFor(parallelismThreshold), 0, 0, table,
4020              null, transformer, basis, reducer).invoke();
4021     }
4022 
4023     /**
4024      * Returns the result of accumulating the given transformation
4025      * of all keys using the given reducer to combine values, and
4026      * the given basis as an identity value.
4027      *
4028      * @param parallelismThreshold the (estimated) number of elements
4029      * needed for this operation to be executed in parallel
4030      * @param transformer a function returning the transformation
4031      * for an element
4032      * @param basis the identity (initial default value) for the reduction
4033      * @param reducer a commutative associative combining function
4034      * @return the result of accumulating the given transformation
4035      * of all keys
4036      * @since 1.8
4037      */
reduceKeysToInt(long parallelismThreshold, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer)4038     public int reduceKeysToInt(long parallelismThreshold,
4039                                ToIntFunction<? super K> transformer,
4040                                int basis,
4041                                IntBinaryOperator reducer) {
4042         if (transformer == null || reducer == null)
4043             throw new NullPointerException();
4044         return new MapReduceKeysToIntTask<K,V>
4045             (null, batchFor(parallelismThreshold), 0, 0, table,
4046              null, transformer, basis, reducer).invoke();
4047     }
4048 
4049     /**
4050      * Performs the given action for each value.
4051      *
4052      * @param parallelismThreshold the (estimated) number of elements
4053      * needed for this operation to be executed in parallel
4054      * @param action the action
4055      * @since 1.8
4056      */
forEachValue(long parallelismThreshold, Consumer<? super V> action)4057     public void forEachValue(long parallelismThreshold,
4058                              Consumer<? super V> action) {
4059         if (action == null)
4060             throw new NullPointerException();
4061         new ForEachValueTask<K,V>
4062             (null, batchFor(parallelismThreshold), 0, 0, table,
4063              action).invoke();
4064     }
4065 
4066     /**
4067      * Performs the given action for each non-null transformation
4068      * of each value.
4069      *
4070      * @param parallelismThreshold the (estimated) number of elements
4071      * needed for this operation to be executed in parallel
4072      * @param transformer a function returning the transformation
4073      * for an element, or null if there is no transformation (in
4074      * which case the action is not applied)
4075      * @param action the action
4076      * @param <U> the return type of the transformer
4077      * @since 1.8
4078      */
forEachValue(long parallelismThreshold, Function<? super V, ? extends U> transformer, Consumer<? super U> action)4079     public <U> void forEachValue(long parallelismThreshold,
4080                                  Function<? super V, ? extends U> transformer,
4081                                  Consumer<? super U> action) {
4082         if (transformer == null || action == null)
4083             throw new NullPointerException();
4084         new ForEachTransformedValueTask<K,V,U>
4085             (null, batchFor(parallelismThreshold), 0, 0, table,
4086              transformer, action).invoke();
4087     }
4088 
4089     /**
4090      * Returns a non-null result from applying the given search
4091      * function on each value, or null if none.  Upon success,
4092      * further element processing is suppressed and the results of
4093      * any other parallel invocations of the search function are
4094      * ignored.
4095      *
4096      * @param parallelismThreshold the (estimated) number of elements
4097      * needed for this operation to be executed in parallel
4098      * @param searchFunction a function returning a non-null
4099      * result on success, else null
4100      * @param <U> the return type of the search function
4101      * @return a non-null result from applying the given search
4102      * function on each value, or null if none
4103      * @since 1.8
4104      */
searchValues(long parallelismThreshold, Function<? super V, ? extends U> searchFunction)4105     public <U> U searchValues(long parallelismThreshold,
4106                               Function<? super V, ? extends U> searchFunction) {
4107         if (searchFunction == null) throw new NullPointerException();
4108         return new SearchValuesTask<K,V,U>
4109             (null, batchFor(parallelismThreshold), 0, 0, table,
4110              searchFunction, new AtomicReference<U>()).invoke();
4111     }
4112 
4113     /**
4114      * Returns the result of accumulating all values using the
4115      * given reducer to combine values, or null if none.
4116      *
4117      * @param parallelismThreshold the (estimated) number of elements
4118      * needed for this operation to be executed in parallel
4119      * @param reducer a commutative associative combining function
4120      * @return the result of accumulating all values
4121      * @since 1.8
4122      */
reduceValues(long parallelismThreshold, BiFunction<? super V, ? super V, ? extends V> reducer)4123     public V reduceValues(long parallelismThreshold,
4124                           BiFunction<? super V, ? super V, ? extends V> reducer) {
4125         if (reducer == null) throw new NullPointerException();
4126         return new ReduceValuesTask<K,V>
4127             (null, batchFor(parallelismThreshold), 0, 0, table,
4128              null, reducer).invoke();
4129     }
4130 
4131     /**
4132      * Returns the result of accumulating the given transformation
4133      * of all values using the given reducer to combine values, or
4134      * null if none.
4135      *
4136      * @param parallelismThreshold the (estimated) number of elements
4137      * needed for this operation to be executed in parallel
4138      * @param transformer a function returning the transformation
4139      * for an element, or null if there is no transformation (in
4140      * which case it is not combined)
4141      * @param reducer a commutative associative combining function
4142      * @param <U> the return type of the transformer
4143      * @return the result of accumulating the given transformation
4144      * of all values
4145      * @since 1.8
4146      */
reduceValues(long parallelismThreshold, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)4147     public <U> U reduceValues(long parallelismThreshold,
4148                               Function<? super V, ? extends U> transformer,
4149                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4150         if (transformer == null || reducer == null)
4151             throw new NullPointerException();
4152         return new MapReduceValuesTask<K,V,U>
4153             (null, batchFor(parallelismThreshold), 0, 0, table,
4154              null, transformer, reducer).invoke();
4155     }
4156 
4157     /**
4158      * Returns the result of accumulating the given transformation
4159      * of all values using the given reducer to combine values,
4160      * and the given basis as an identity value.
4161      *
4162      * @param parallelismThreshold the (estimated) number of elements
4163      * needed for this operation to be executed in parallel
4164      * @param transformer a function returning the transformation
4165      * for an element
4166      * @param basis the identity (initial default value) for the reduction
4167      * @param reducer a commutative associative combining function
4168      * @return the result of accumulating the given transformation
4169      * of all values
4170      * @since 1.8
4171      */
reduceValuesToDouble(long parallelismThreshold, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer)4172     public double reduceValuesToDouble(long parallelismThreshold,
4173                                        ToDoubleFunction<? super V> transformer,
4174                                        double basis,
4175                                        DoubleBinaryOperator reducer) {
4176         if (transformer == null || reducer == null)
4177             throw new NullPointerException();
4178         return new MapReduceValuesToDoubleTask<K,V>
4179             (null, batchFor(parallelismThreshold), 0, 0, table,
4180              null, transformer, basis, reducer).invoke();
4181     }
4182 
4183     /**
4184      * Returns the result of accumulating the given transformation
4185      * of all values using the given reducer to combine values,
4186      * and the given basis as an identity value.
4187      *
4188      * @param parallelismThreshold the (estimated) number of elements
4189      * needed for this operation to be executed in parallel
4190      * @param transformer a function returning the transformation
4191      * for an element
4192      * @param basis the identity (initial default value) for the reduction
4193      * @param reducer a commutative associative combining function
4194      * @return the result of accumulating the given transformation
4195      * of all values
4196      * @since 1.8
4197      */
reduceValuesToLong(long parallelismThreshold, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer)4198     public long reduceValuesToLong(long parallelismThreshold,
4199                                    ToLongFunction<? super V> transformer,
4200                                    long basis,
4201                                    LongBinaryOperator reducer) {
4202         if (transformer == null || reducer == null)
4203             throw new NullPointerException();
4204         return new MapReduceValuesToLongTask<K,V>
4205             (null, batchFor(parallelismThreshold), 0, 0, table,
4206              null, transformer, basis, reducer).invoke();
4207     }
4208 
4209     /**
4210      * Returns the result of accumulating the given transformation
4211      * of all values using the given reducer to combine values,
4212      * and the given basis as an identity value.
4213      *
4214      * @param parallelismThreshold the (estimated) number of elements
4215      * needed for this operation to be executed in parallel
4216      * @param transformer a function returning the transformation
4217      * for an element
4218      * @param basis the identity (initial default value) for the reduction
4219      * @param reducer a commutative associative combining function
4220      * @return the result of accumulating the given transformation
4221      * of all values
4222      * @since 1.8
4223      */
reduceValuesToInt(long parallelismThreshold, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer)4224     public int reduceValuesToInt(long parallelismThreshold,
4225                                  ToIntFunction<? super V> transformer,
4226                                  int basis,
4227                                  IntBinaryOperator reducer) {
4228         if (transformer == null || reducer == null)
4229             throw new NullPointerException();
4230         return new MapReduceValuesToIntTask<K,V>
4231             (null, batchFor(parallelismThreshold), 0, 0, table,
4232              null, transformer, basis, reducer).invoke();
4233     }
4234 
4235     /**
4236      * Performs the given action for each entry.
4237      *
4238      * @param parallelismThreshold the (estimated) number of elements
4239      * needed for this operation to be executed in parallel
4240      * @param action the action
4241      * @since 1.8
4242      */
forEachEntry(long parallelismThreshold, Consumer<? super Map.Entry<K,V>> action)4243     public void forEachEntry(long parallelismThreshold,
4244                              Consumer<? super Map.Entry<K,V>> action) {
4245         if (action == null) throw new NullPointerException();
4246         new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4247                                   action).invoke();
4248     }
4249 
4250     /**
4251      * Performs the given action for each non-null transformation
4252      * of each entry.
4253      *
4254      * @param parallelismThreshold the (estimated) number of elements
4255      * needed for this operation to be executed in parallel
4256      * @param transformer a function returning the transformation
4257      * for an element, or null if there is no transformation (in
4258      * which case the action is not applied)
4259      * @param action the action
4260      * @param <U> the return type of the transformer
4261      * @since 1.8
4262      */
forEachEntry(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action)4263     public <U> void forEachEntry(long parallelismThreshold,
4264                                  Function<Map.Entry<K,V>, ? extends U> transformer,
4265                                  Consumer<? super U> action) {
4266         if (transformer == null || action == null)
4267             throw new NullPointerException();
4268         new ForEachTransformedEntryTask<K,V,U>
4269             (null, batchFor(parallelismThreshold), 0, 0, table,
4270              transformer, action).invoke();
4271     }
4272 
4273     /**
4274      * Returns a non-null result from applying the given search
4275      * function on each entry, or null if none.  Upon success,
4276      * further element processing is suppressed and the results of
4277      * any other parallel invocations of the search function are
4278      * ignored.
4279      *
4280      * @param parallelismThreshold the (estimated) number of elements
4281      * needed for this operation to be executed in parallel
4282      * @param searchFunction a function returning a non-null
4283      * result on success, else null
4284      * @param <U> the return type of the search function
4285      * @return a non-null result from applying the given search
4286      * function on each entry, or null if none
4287      * @since 1.8
4288      */
searchEntries(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> searchFunction)4289     public <U> U searchEntries(long parallelismThreshold,
4290                                Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4291         if (searchFunction == null) throw new NullPointerException();
4292         return new SearchEntriesTask<K,V,U>
4293             (null, batchFor(parallelismThreshold), 0, 0, table,
4294              searchFunction, new AtomicReference<U>()).invoke();
4295     }
4296 
4297     /**
4298      * Returns the result of accumulating all entries using the
4299      * given reducer to combine values, or null if none.
4300      *
4301      * @param parallelismThreshold the (estimated) number of elements
4302      * needed for this operation to be executed in parallel
4303      * @param reducer a commutative associative combining function
4304      * @return the result of accumulating all entries
4305      * @since 1.8
4306      */
reduceEntries(long parallelismThreshold, BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer)4307     public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4308                                         BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4309         if (reducer == null) throw new NullPointerException();
4310         return new ReduceEntriesTask<K,V>
4311             (null, batchFor(parallelismThreshold), 0, 0, table,
4312              null, reducer).invoke();
4313     }
4314 
4315     /**
4316      * Returns the result of accumulating the given transformation
4317      * of all entries using the given reducer to combine values,
4318      * or null if none.
4319      *
4320      * @param parallelismThreshold the (estimated) number of elements
4321      * needed for this operation to be executed in parallel
4322      * @param transformer a function returning the transformation
4323      * for an element, or null if there is no transformation (in
4324      * which case it is not combined)
4325      * @param reducer a commutative associative combining function
4326      * @param <U> the return type of the transformer
4327      * @return the result of accumulating the given transformation
4328      * of all entries
4329      * @since 1.8
4330      */
reduceEntries(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)4331     public <U> U reduceEntries(long parallelismThreshold,
4332                                Function<Map.Entry<K,V>, ? extends U> transformer,
4333                                BiFunction<? super U, ? super U, ? extends U> reducer) {
4334         if (transformer == null || reducer == null)
4335             throw new NullPointerException();
4336         return new MapReduceEntriesTask<K,V,U>
4337             (null, batchFor(parallelismThreshold), 0, 0, table,
4338              null, transformer, reducer).invoke();
4339     }
4340 
4341     /**
4342      * Returns the result of accumulating the given transformation
4343      * of all entries using the given reducer to combine values,
4344      * and the given basis as an identity value.
4345      *
4346      * @param parallelismThreshold the (estimated) number of elements
4347      * needed for this operation to be executed in parallel
4348      * @param transformer a function returning the transformation
4349      * for an element
4350      * @param basis the identity (initial default value) for the reduction
4351      * @param reducer a commutative associative combining function
4352      * @return the result of accumulating the given transformation
4353      * of all entries
4354      * @since 1.8
4355      */
reduceEntriesToDouble(long parallelismThreshold, ToDoubleFunction<Map.Entry<K,V>> transformer, double basis, DoubleBinaryOperator reducer)4356     public double reduceEntriesToDouble(long parallelismThreshold,
4357                                         ToDoubleFunction<Map.Entry<K,V>> transformer,
4358                                         double basis,
4359                                         DoubleBinaryOperator reducer) {
4360         if (transformer == null || reducer == null)
4361             throw new NullPointerException();
4362         return new MapReduceEntriesToDoubleTask<K,V>
4363             (null, batchFor(parallelismThreshold), 0, 0, table,
4364              null, transformer, basis, reducer).invoke();
4365     }
4366 
4367     /**
4368      * Returns the result of accumulating the given transformation
4369      * of all entries using the given reducer to combine values,
4370      * and the given basis as an identity value.
4371      *
4372      * @param parallelismThreshold the (estimated) number of elements
4373      * needed for this operation to be executed in parallel
4374      * @param transformer a function returning the transformation
4375      * for an element
4376      * @param basis the identity (initial default value) for the reduction
4377      * @param reducer a commutative associative combining function
4378      * @return the result of accumulating the given transformation
4379      * of all entries
4380      * @since 1.8
4381      */
reduceEntriesToLong(long parallelismThreshold, ToLongFunction<Map.Entry<K,V>> transformer, long basis, LongBinaryOperator reducer)4382     public long reduceEntriesToLong(long parallelismThreshold,
4383                                     ToLongFunction<Map.Entry<K,V>> transformer,
4384                                     long basis,
4385                                     LongBinaryOperator reducer) {
4386         if (transformer == null || reducer == null)
4387             throw new NullPointerException();
4388         return new MapReduceEntriesToLongTask<K,V>
4389             (null, batchFor(parallelismThreshold), 0, 0, table,
4390              null, transformer, basis, reducer).invoke();
4391     }
4392 
4393     /**
4394      * Returns the result of accumulating the given transformation
4395      * of all entries using the given reducer to combine values,
4396      * and the given basis as an identity value.
4397      *
4398      * @param parallelismThreshold the (estimated) number of elements
4399      * needed for this operation to be executed in parallel
4400      * @param transformer a function returning the transformation
4401      * for an element
4402      * @param basis the identity (initial default value) for the reduction
4403      * @param reducer a commutative associative combining function
4404      * @return the result of accumulating the given transformation
4405      * of all entries
4406      * @since 1.8
4407      */
reduceEntriesToInt(long parallelismThreshold, ToIntFunction<Map.Entry<K,V>> transformer, int basis, IntBinaryOperator reducer)4408     public int reduceEntriesToInt(long parallelismThreshold,
4409                                   ToIntFunction<Map.Entry<K,V>> transformer,
4410                                   int basis,
4411                                   IntBinaryOperator reducer) {
4412         if (transformer == null || reducer == null)
4413             throw new NullPointerException();
4414         return new MapReduceEntriesToIntTask<K,V>
4415             (null, batchFor(parallelismThreshold), 0, 0, table,
4416              null, transformer, basis, reducer).invoke();
4417     }
4418 
4419 
4420     /* ----------------Views -------------- */
4421 
4422     /**
4423      * Base class for views.
4424      */
4425     abstract static class CollectionView<K,V,E>
4426         implements Collection<E>, java.io.Serializable {
4427         private static final long serialVersionUID = 7249069246763182397L;
4428         final ConcurrentHashMap<K,V> map;
CollectionView(ConcurrentHashMap<K,V> map)4429         CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4430 
4431         /**
4432          * Returns the map backing this view.
4433          *
4434          * @return the map backing this view
4435          */
getMap()4436         public ConcurrentHashMap<K,V> getMap() { return map; }
4437 
4438         /**
4439          * Removes all of the elements from this view, by removing all
4440          * the mappings from the map backing this view.
4441          */
clear()4442         public final void clear()      { map.clear(); }
size()4443         public final int size()        { return map.size(); }
isEmpty()4444         public final boolean isEmpty() { return map.isEmpty(); }
4445 
4446         // implementations below rely on concrete classes supplying these
4447         // abstract methods
4448         /**
4449          * Returns an iterator over the elements in this collection.
4450          *
4451          * <p>The returned iterator is
4452          * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4453          *
4454          * @return an iterator over the elements in this collection
4455          */
iterator()4456         public abstract Iterator<E> iterator();
contains(Object o)4457         public abstract boolean contains(Object o);
remove(Object o)4458         public abstract boolean remove(Object o);
4459 
4460         private static final String OOME_MSG = "Required array size too large";
4461 
toArray()4462         public final Object[] toArray() {
4463             long sz = map.mappingCount();
4464             if (sz > MAX_ARRAY_SIZE)
4465                 throw new OutOfMemoryError(OOME_MSG);
4466             int n = (int)sz;
4467             Object[] r = new Object[n];
4468             int i = 0;
4469             for (E e : this) {
4470                 if (i == n) {
4471                     if (n >= MAX_ARRAY_SIZE)
4472                         throw new OutOfMemoryError(OOME_MSG);
4473                     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4474                         n = MAX_ARRAY_SIZE;
4475                     else
4476                         n += (n >>> 1) + 1;
4477                     r = Arrays.copyOf(r, n);
4478                 }
4479                 r[i++] = e;
4480             }
4481             return (i == n) ? r : Arrays.copyOf(r, i);
4482         }
4483 
4484         @SuppressWarnings("unchecked")
toArray(T[] a)4485         public final <T> T[] toArray(T[] a) {
4486             long sz = map.mappingCount();
4487             if (sz > MAX_ARRAY_SIZE)
4488                 throw new OutOfMemoryError(OOME_MSG);
4489             int m = (int)sz;
4490             T[] r = (a.length >= m) ? a :
4491                 (T[])java.lang.reflect.Array
4492                 .newInstance(a.getClass().getComponentType(), m);
4493             int n = r.length;
4494             int i = 0;
4495             for (E e : this) {
4496                 if (i == n) {
4497                     if (n >= MAX_ARRAY_SIZE)
4498                         throw new OutOfMemoryError(OOME_MSG);
4499                     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4500                         n = MAX_ARRAY_SIZE;
4501                     else
4502                         n += (n >>> 1) + 1;
4503                     r = Arrays.copyOf(r, n);
4504                 }
4505                 r[i++] = (T)e;
4506             }
4507             if (a == r && i < n) {
4508                 r[i] = null; // null-terminate
4509                 return r;
4510             }
4511             return (i == n) ? r : Arrays.copyOf(r, i);
4512         }
4513 
4514         /**
4515          * Returns a string representation of this collection.
4516          * The string representation consists of the string representations
4517          * of the collection's elements in the order they are returned by
4518          * its iterator, enclosed in square brackets ({@code "[]"}).
4519          * Adjacent elements are separated by the characters {@code ", "}
4520          * (comma and space).  Elements are converted to strings as by
4521          * {@link String#valueOf(Object)}.
4522          *
4523          * @return a string representation of this collection
4524          */
toString()4525         public final String toString() {
4526             StringBuilder sb = new StringBuilder();
4527             sb.append('[');
4528             Iterator<E> it = iterator();
4529             if (it.hasNext()) {
4530                 for (;;) {
4531                     Object e = it.next();
4532                     sb.append(e == this ? "(this Collection)" : e);
4533                     if (!it.hasNext())
4534                         break;
4535                     sb.append(',').append(' ');
4536                 }
4537             }
4538             return sb.append(']').toString();
4539         }
4540 
containsAll(Collection<?> c)4541         public final boolean containsAll(Collection<?> c) {
4542             if (c != this) {
4543                 for (Object e : c) {
4544                     if (e == null || !contains(e))
4545                         return false;
4546                 }
4547             }
4548             return true;
4549         }
4550 
removeAll(Collection<?> c)4551         public boolean removeAll(Collection<?> c) {
4552             if (c == null) throw new NullPointerException();
4553             boolean modified = false;
4554             // Use (c instanceof Set) as a hint that lookup in c is as
4555             // efficient as this view
4556             Node<K,V>[] t;
4557             if ((t = map.table) == null) {
4558                 return false;
4559             } else if (c instanceof Set<?> && c.size() > t.length) {
4560                 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4561                     if (c.contains(it.next())) {
4562                         it.remove();
4563                         modified = true;
4564                     }
4565                 }
4566             } else {
4567                 for (Object e : c)
4568                     modified |= remove(e);
4569             }
4570             return modified;
4571         }
4572 
retainAll(Collection<?> c)4573         public final boolean retainAll(Collection<?> c) {
4574             if (c == null) throw new NullPointerException();
4575             boolean modified = false;
4576             for (Iterator<E> it = iterator(); it.hasNext();) {
4577                 if (!c.contains(it.next())) {
4578                     it.remove();
4579                     modified = true;
4580                 }
4581             }
4582             return modified;
4583         }
4584 
4585     }
4586 
4587     /**
4588      * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4589      * which additions may optionally be enabled by mapping to a
4590      * common value.  This class cannot be directly instantiated.
4591      * See {@link #keySet(Object) keySet(V)},
4592      * {@link #newKeySet() newKeySet()},
4593      * {@link #newKeySet(int) newKeySet(int)}.
4594      *
4595      * @since 1.8
4596      */
4597     public static class KeySetView<K,V> extends CollectionView<K,V,K>
4598         implements Set<K>, java.io.Serializable {
4599         private static final long serialVersionUID = 7249069246763182397L;
4600         @SuppressWarnings("serial") // Conditionally serializable
4601         private final V value;
KeySetView(ConcurrentHashMap<K,V> map, V value)4602         KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4603             super(map);
4604             this.value = value;
4605         }
4606 
4607         /**
4608          * Returns the default mapped value for additions,
4609          * or {@code null} if additions are not supported.
4610          *
4611          * @return the default mapped value for additions, or {@code null}
4612          * if not supported
4613          */
getMappedValue()4614         public V getMappedValue() { return value; }
4615 
4616         /**
4617          * {@inheritDoc}
4618          * @throws NullPointerException if the specified key is null
4619          */
contains(Object o)4620         public boolean contains(Object o) { return map.containsKey(o); }
4621 
4622         /**
4623          * Removes the key from this map view, by removing the key (and its
4624          * corresponding value) from the backing map.  This method does
4625          * nothing if the key is not in the map.
4626          *
4627          * @param  o the key to be removed from the backing map
4628          * @return {@code true} if the backing map contained the specified key
4629          * @throws NullPointerException if the specified key is null
4630          */
remove(Object o)4631         public boolean remove(Object o) { return map.remove(o) != null; }
4632 
4633         /**
4634          * @return an iterator over the keys of the backing map
4635          */
iterator()4636         public Iterator<K> iterator() {
4637             Node<K,V>[] t;
4638             ConcurrentHashMap<K,V> m = map;
4639             int f = (t = m.table) == null ? 0 : t.length;
4640             return new KeyIterator<K,V>(t, f, 0, f, m);
4641         }
4642 
4643         /**
4644          * Adds the specified key to this set view by mapping the key to
4645          * the default mapped value in the backing map, if defined.
4646          *
4647          * @param e key to be added
4648          * @return {@code true} if this set changed as a result of the call
4649          * @throws NullPointerException if the specified key is null
4650          * @throws UnsupportedOperationException if no default mapped value
4651          * for additions was provided
4652          */
add(K e)4653         public boolean add(K e) {
4654             V v;
4655             if ((v = value) == null)
4656                 throw new UnsupportedOperationException();
4657             return map.putVal(e, v, true) == null;
4658         }
4659 
4660         /**
4661          * Adds all of the elements in the specified collection to this set,
4662          * as if by calling {@link #add} on each one.
4663          *
4664          * @param c the elements to be inserted into this set
4665          * @return {@code true} if this set changed as a result of the call
4666          * @throws NullPointerException if the collection or any of its
4667          * elements are {@code null}
4668          * @throws UnsupportedOperationException if no default mapped value
4669          * for additions was provided
4670          */
addAll(Collection<? extends K> c)4671         public boolean addAll(Collection<? extends K> c) {
4672             boolean added = false;
4673             V v;
4674             if ((v = value) == null)
4675                 throw new UnsupportedOperationException();
4676             for (K e : c) {
4677                 if (map.putVal(e, v, true) == null)
4678                     added = true;
4679             }
4680             return added;
4681         }
4682 
hashCode()4683         public int hashCode() {
4684             int h = 0;
4685             for (K e : this)
4686                 h += e.hashCode();
4687             return h;
4688         }
4689 
equals(Object o)4690         public boolean equals(Object o) {
4691             Set<?> c;
4692             return ((o instanceof Set) &&
4693                     ((c = (Set<?>)o) == this ||
4694                      (containsAll(c) && c.containsAll(this))));
4695         }
4696 
spliterator()4697         public Spliterator<K> spliterator() {
4698             Node<K,V>[] t;
4699             ConcurrentHashMap<K,V> m = map;
4700             long n = m.sumCount();
4701             int f = (t = m.table) == null ? 0 : t.length;
4702             return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4703         }
4704 
forEach(Consumer<? super K> action)4705         public void forEach(Consumer<? super K> action) {
4706             if (action == null) throw new NullPointerException();
4707             Node<K,V>[] t;
4708             if ((t = map.table) != null) {
4709                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4710                 for (Node<K,V> p; (p = it.advance()) != null; )
4711                     action.accept(p.key);
4712             }
4713         }
4714     }
4715 
4716     /**
4717      * A view of a ConcurrentHashMap as a {@link Collection} of
4718      * values, in which additions are disabled. This class cannot be
4719      * directly instantiated. See {@link #values()}.
4720      */
4721     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4722         implements Collection<V>, java.io.Serializable {
4723         private static final long serialVersionUID = 2249069246763182397L;
ValuesView(ConcurrentHashMap<K,V> map)4724         ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
contains(Object o)4725         public final boolean contains(Object o) {
4726             return map.containsValue(o);
4727         }
4728 
remove(Object o)4729         public final boolean remove(Object o) {
4730             if (o != null) {
4731                 for (Iterator<V> it = iterator(); it.hasNext();) {
4732                     if (o.equals(it.next())) {
4733                         it.remove();
4734                         return true;
4735                     }
4736                 }
4737             }
4738             return false;
4739         }
4740 
iterator()4741         public final Iterator<V> iterator() {
4742             ConcurrentHashMap<K,V> m = map;
4743             Node<K,V>[] t;
4744             int f = (t = m.table) == null ? 0 : t.length;
4745             return new ValueIterator<K,V>(t, f, 0, f, m);
4746         }
4747 
add(V e)4748         public final boolean add(V e) {
4749             throw new UnsupportedOperationException();
4750         }
addAll(Collection<? extends V> c)4751         public final boolean addAll(Collection<? extends V> c) {
4752             throw new UnsupportedOperationException();
4753         }
4754 
removeAll(Collection<?> c)4755         @Override public boolean removeAll(Collection<?> c) {
4756             if (c == null) throw new NullPointerException();
4757             boolean modified = false;
4758             for (Iterator<V> it = iterator(); it.hasNext();) {
4759                 if (c.contains(it.next())) {
4760                     it.remove();
4761                     modified = true;
4762                 }
4763             }
4764             return modified;
4765         }
4766 
removeIf(Predicate<? super V> filter)4767         public boolean removeIf(Predicate<? super V> filter) {
4768             return map.removeValueIf(filter);
4769         }
4770 
spliterator()4771         public Spliterator<V> spliterator() {
4772             Node<K,V>[] t;
4773             ConcurrentHashMap<K,V> m = map;
4774             long n = m.sumCount();
4775             int f = (t = m.table) == null ? 0 : t.length;
4776             return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4777         }
4778 
forEach(Consumer<? super V> action)4779         public void forEach(Consumer<? super V> action) {
4780             if (action == null) throw new NullPointerException();
4781             Node<K,V>[] t;
4782             if ((t = map.table) != null) {
4783                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4784                 for (Node<K,V> p; (p = it.advance()) != null; )
4785                     action.accept(p.val);
4786             }
4787         }
4788     }
4789 
4790     /**
4791      * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4792      * entries.  This class cannot be directly instantiated. See
4793      * {@link #entrySet()}.
4794      */
4795     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4796         implements Set<Map.Entry<K,V>>, java.io.Serializable {
4797         private static final long serialVersionUID = 2249069246763182397L;
EntrySetView(ConcurrentHashMap<K,V> map)4798         EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4799 
contains(Object o)4800         public boolean contains(Object o) {
4801             Object k, v, r; Map.Entry<?,?> e;
4802             return ((o instanceof Map.Entry) &&
4803                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4804                     (r = map.get(k)) != null &&
4805                     (v = e.getValue()) != null &&
4806                     (v == r || v.equals(r)));
4807         }
4808 
remove(Object o)4809         public boolean remove(Object o) {
4810             Object k, v; Map.Entry<?,?> e;
4811             return ((o instanceof Map.Entry) &&
4812                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4813                     (v = e.getValue()) != null &&
4814                     map.remove(k, v));
4815         }
4816 
4817         /**
4818          * @return an iterator over the entries of the backing map
4819          */
iterator()4820         public Iterator<Map.Entry<K,V>> iterator() {
4821             ConcurrentHashMap<K,V> m = map;
4822             Node<K,V>[] t;
4823             int f = (t = m.table) == null ? 0 : t.length;
4824             return new EntryIterator<K,V>(t, f, 0, f, m);
4825         }
4826 
add(Entry<K,V> e)4827         public boolean add(Entry<K,V> e) {
4828             return map.putVal(e.getKey(), e.getValue(), false) == null;
4829         }
4830 
addAll(Collection<? extends Entry<K,V>> c)4831         public boolean addAll(Collection<? extends Entry<K,V>> c) {
4832             boolean added = false;
4833             for (Entry<K,V> e : c) {
4834                 if (add(e))
4835                     added = true;
4836             }
4837             return added;
4838         }
4839 
removeIf(Predicate<? super Entry<K,V>> filter)4840         public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4841             return map.removeEntryIf(filter);
4842         }
4843 
hashCode()4844         public final int hashCode() {
4845             int h = 0;
4846             Node<K,V>[] t;
4847             if ((t = map.table) != null) {
4848                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4849                 for (Node<K,V> p; (p = it.advance()) != null; ) {
4850                     h += p.hashCode();
4851                 }
4852             }
4853             return h;
4854         }
4855 
equals(Object o)4856         public final boolean equals(Object o) {
4857             Set<?> c;
4858             return ((o instanceof Set) &&
4859                     ((c = (Set<?>)o) == this ||
4860                      (containsAll(c) && c.containsAll(this))));
4861         }
4862 
spliterator()4863         public Spliterator<Map.Entry<K,V>> spliterator() {
4864             Node<K,V>[] t;
4865             ConcurrentHashMap<K,V> m = map;
4866             long n = m.sumCount();
4867             int f = (t = m.table) == null ? 0 : t.length;
4868             return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4869         }
4870 
forEach(Consumer<? super Map.Entry<K,V>> action)4871         public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4872             if (action == null) throw new NullPointerException();
4873             Node<K,V>[] t;
4874             if ((t = map.table) != null) {
4875                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4876                 for (Node<K,V> p; (p = it.advance()) != null; )
4877                     action.accept(new MapEntry<K,V>(p.key, p.val, map));
4878             }
4879         }
4880 
4881     }
4882 
4883     // -------------------------------------------------------
4884 
4885     /**
4886      * Base class for bulk tasks. Repeats some fields and code from
4887      * class Traverser, because we need to subclass CountedCompleter.
4888      */
4889     @SuppressWarnings("serial")
4890     abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4891         Node<K,V>[] tab;        // same as Traverser
4892         Node<K,V> next;
4893         TableStack<K,V> stack, spare;
4894         int index;
4895         int baseIndex;
4896         int baseLimit;
4897         final int baseSize;
4898         int batch;              // split control
4899 
BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t)4900         BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4901             super(par);
4902             this.batch = b;
4903             this.index = this.baseIndex = i;
4904             if ((this.tab = t) == null)
4905                 this.baseSize = this.baseLimit = 0;
4906             else if (par == null)
4907                 this.baseSize = this.baseLimit = t.length;
4908             else {
4909                 this.baseLimit = f;
4910                 this.baseSize = par.baseSize;
4911             }
4912         }
4913 
4914         /**
4915          * Same as Traverser version.
4916          */
advance()4917         final Node<K,V> advance() {
4918             Node<K,V> e;
4919             if ((e = next) != null)
4920                 e = e.next;
4921             for (;;) {
4922                 Node<K,V>[] t; int i, n;
4923                 if (e != null)
4924                     return next = e;
4925                 if (baseIndex >= baseLimit || (t = tab) == null ||
4926                     (n = t.length) <= (i = index) || i < 0)
4927                     return next = null;
4928                 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4929                     if (e instanceof ForwardingNode) {
4930                         tab = ((ForwardingNode<K,V>)e).nextTable;
4931                         e = null;
4932                         pushState(t, i, n);
4933                         continue;
4934                     }
4935                     else if (e instanceof TreeBin)
4936                         e = ((TreeBin<K,V>)e).first;
4937                     else
4938                         e = null;
4939                 }
4940                 if (stack != null)
4941                     recoverState(n);
4942                 else if ((index = i + baseSize) >= n)
4943                     index = ++baseIndex;
4944             }
4945         }
4946 
pushState(Node<K,V>[] t, int i, int n)4947         private void pushState(Node<K,V>[] t, int i, int n) {
4948             TableStack<K,V> s = spare;
4949             if (s != null)
4950                 spare = s.next;
4951             else
4952                 s = new TableStack<K,V>();
4953             s.tab = t;
4954             s.length = n;
4955             s.index = i;
4956             s.next = stack;
4957             stack = s;
4958         }
4959 
recoverState(int n)4960         private void recoverState(int n) {
4961             TableStack<K,V> s; int len;
4962             while ((s = stack) != null && (index += (len = s.length)) >= n) {
4963                 n = len;
4964                 index = s.index;
4965                 tab = s.tab;
4966                 s.tab = null;
4967                 TableStack<K,V> next = s.next;
4968                 s.next = spare; // save for reuse
4969                 stack = next;
4970                 spare = s;
4971             }
4972             if (s == null && (index += baseSize) >= n)
4973                 index = ++baseIndex;
4974         }
4975     }
4976 
4977     /*
4978      * Task classes. Coded in a regular but ugly format/style to
4979      * simplify checks that each variant differs in the right way from
4980      * others. The null screenings exist because compilers cannot tell
4981      * that we've already null-checked task arguments, so we force
4982      * simplest hoisted bypass to help avoid convoluted traps.
4983      */
4984     @SuppressWarnings("serial")
4985     static final class ForEachKeyTask<K,V>
4986         extends BulkTask<K,V,Void> {
4987         final Consumer<? super K> action;
ForEachKeyTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super K> action)4988         ForEachKeyTask
4989             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4990              Consumer<? super K> action) {
4991             super(p, b, i, f, t);
4992             this.action = action;
4993         }
compute()4994         public final void compute() {
4995             final Consumer<? super K> action;
4996             if ((action = this.action) != null) {
4997                 for (int i = baseIndex, f, h; batch > 0 &&
4998                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
4999                     addToPendingCount(1);
5000                     new ForEachKeyTask<K,V>
5001                         (this, batch >>>= 1, baseLimit = h, f, tab,
5002                          action).fork();
5003                 }
5004                 for (Node<K,V> p; (p = advance()) != null;)
5005                     action.accept(p.key);
5006                 propagateCompletion();
5007             }
5008         }
5009     }
5010 
5011     @SuppressWarnings("serial")
5012     static final class ForEachValueTask<K,V>
5013         extends BulkTask<K,V,Void> {
5014         final Consumer<? super V> action;
ForEachValueTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super V> action)5015         ForEachValueTask
5016             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5017              Consumer<? super V> action) {
5018             super(p, b, i, f, t);
5019             this.action = action;
5020         }
compute()5021         public final void compute() {
5022             final Consumer<? super V> action;
5023             if ((action = this.action) != null) {
5024                 for (int i = baseIndex, f, h; batch > 0 &&
5025                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5026                     addToPendingCount(1);
5027                     new ForEachValueTask<K,V>
5028                         (this, batch >>>= 1, baseLimit = h, f, tab,
5029                          action).fork();
5030                 }
5031                 for (Node<K,V> p; (p = advance()) != null;)
5032                     action.accept(p.val);
5033                 propagateCompletion();
5034             }
5035         }
5036     }
5037 
5038     @SuppressWarnings("serial")
5039     static final class ForEachEntryTask<K,V>
5040         extends BulkTask<K,V,Void> {
5041         final Consumer<? super Entry<K,V>> action;
ForEachEntryTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super Entry<K,V>> action)5042         ForEachEntryTask
5043             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044              Consumer<? super Entry<K,V>> action) {
5045             super(p, b, i, f, t);
5046             this.action = action;
5047         }
compute()5048         public final void compute() {
5049             final Consumer<? super Entry<K,V>> action;
5050             if ((action = this.action) != null) {
5051                 for (int i = baseIndex, f, h; batch > 0 &&
5052                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5053                     addToPendingCount(1);
5054                     new ForEachEntryTask<K,V>
5055                         (this, batch >>>= 1, baseLimit = h, f, tab,
5056                          action).fork();
5057                 }
5058                 for (Node<K,V> p; (p = advance()) != null; )
5059                     action.accept(p);
5060                 propagateCompletion();
5061             }
5062         }
5063     }
5064 
5065     @SuppressWarnings("serial")
5066     static final class ForEachMappingTask<K,V>
5067         extends BulkTask<K,V,Void> {
5068         final BiConsumer<? super K, ? super V> action;
ForEachMappingTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiConsumer<? super K,? super V> action)5069         ForEachMappingTask
5070             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5071              BiConsumer<? super K,? super V> action) {
5072             super(p, b, i, f, t);
5073             this.action = action;
5074         }
compute()5075         public final void compute() {
5076             final BiConsumer<? super K, ? super V> action;
5077             if ((action = this.action) != null) {
5078                 for (int i = baseIndex, f, h; batch > 0 &&
5079                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5080                     addToPendingCount(1);
5081                     new ForEachMappingTask<K,V>
5082                         (this, batch >>>= 1, baseLimit = h, f, tab,
5083                          action).fork();
5084                 }
5085                 for (Node<K,V> p; (p = advance()) != null; )
5086                     action.accept(p.key, p.val);
5087                 propagateCompletion();
5088             }
5089         }
5090     }
5091 
5092     @SuppressWarnings("serial")
5093     static final class ForEachTransformedKeyTask<K,V,U>
5094         extends BulkTask<K,V,Void> {
5095         final Function<? super K, ? extends U> transformer;
5096         final Consumer<? super U> action;
ForEachTransformedKeyTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super K, ? extends U> transformer, Consumer<? super U> action)5097         ForEachTransformedKeyTask
5098             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5099              Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5100             super(p, b, i, f, t);
5101             this.transformer = transformer; this.action = action;
5102         }
compute()5103         public final void compute() {
5104             final Function<? super K, ? extends U> transformer;
5105             final Consumer<? super U> action;
5106             if ((transformer = this.transformer) != null &&
5107                 (action = this.action) != null) {
5108                 for (int i = baseIndex, f, h; batch > 0 &&
5109                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5110                     addToPendingCount(1);
5111                     new ForEachTransformedKeyTask<K,V,U>
5112                         (this, batch >>>= 1, baseLimit = h, f, tab,
5113                          transformer, action).fork();
5114                 }
5115                 for (Node<K,V> p; (p = advance()) != null; ) {
5116                     U u;
5117                     if ((u = transformer.apply(p.key)) != null)
5118                         action.accept(u);
5119                 }
5120                 propagateCompletion();
5121             }
5122         }
5123     }
5124 
5125     @SuppressWarnings("serial")
5126     static final class ForEachTransformedValueTask<K,V,U>
5127         extends BulkTask<K,V,Void> {
5128         final Function<? super V, ? extends U> transformer;
5129         final Consumer<? super U> action;
ForEachTransformedValueTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super V, ? extends U> transformer, Consumer<? super U> action)5130         ForEachTransformedValueTask
5131             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5132              Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5133             super(p, b, i, f, t);
5134             this.transformer = transformer; this.action = action;
5135         }
compute()5136         public final void compute() {
5137             final Function<? super V, ? extends U> transformer;
5138             final Consumer<? super U> action;
5139             if ((transformer = this.transformer) != null &&
5140                 (action = this.action) != null) {
5141                 for (int i = baseIndex, f, h; batch > 0 &&
5142                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5143                     addToPendingCount(1);
5144                     new ForEachTransformedValueTask<K,V,U>
5145                         (this, batch >>>= 1, baseLimit = h, f, tab,
5146                          transformer, action).fork();
5147                 }
5148                 for (Node<K,V> p; (p = advance()) != null; ) {
5149                     U u;
5150                     if ((u = transformer.apply(p.val)) != null)
5151                         action.accept(u);
5152                 }
5153                 propagateCompletion();
5154             }
5155         }
5156     }
5157 
5158     @SuppressWarnings("serial")
5159     static final class ForEachTransformedEntryTask<K,V,U>
5160         extends BulkTask<K,V,Void> {
5161         final Function<Map.Entry<K,V>, ? extends U> transformer;
5162         final Consumer<? super U> action;
ForEachTransformedEntryTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action)5163         ForEachTransformedEntryTask
5164             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5165              Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5166             super(p, b, i, f, t);
5167             this.transformer = transformer; this.action = action;
5168         }
compute()5169         public final void compute() {
5170             final Function<Map.Entry<K,V>, ? extends U> transformer;
5171             final Consumer<? super U> action;
5172             if ((transformer = this.transformer) != null &&
5173                 (action = this.action) != null) {
5174                 for (int i = baseIndex, f, h; batch > 0 &&
5175                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5176                     addToPendingCount(1);
5177                     new ForEachTransformedEntryTask<K,V,U>
5178                         (this, batch >>>= 1, baseLimit = h, f, tab,
5179                          transformer, action).fork();
5180                 }
5181                 for (Node<K,V> p; (p = advance()) != null; ) {
5182                     U u;
5183                     if ((u = transformer.apply(p)) != null)
5184                         action.accept(u);
5185                 }
5186                 propagateCompletion();
5187             }
5188         }
5189     }
5190 
5191     @SuppressWarnings("serial")
5192     static final class ForEachTransformedMappingTask<K,V,U>
5193         extends BulkTask<K,V,Void> {
5194         final BiFunction<? super K, ? super V, ? extends U> transformer;
5195         final Consumer<? super U> action;
ForEachTransformedMappingTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action)5196         ForEachTransformedMappingTask
5197             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5198              BiFunction<? super K, ? super V, ? extends U> transformer,
5199              Consumer<? super U> action) {
5200             super(p, b, i, f, t);
5201             this.transformer = transformer; this.action = action;
5202         }
compute()5203         public final void compute() {
5204             final BiFunction<? super K, ? super V, ? extends U> transformer;
5205             final Consumer<? super U> action;
5206             if ((transformer = this.transformer) != null &&
5207                 (action = this.action) != null) {
5208                 for (int i = baseIndex, f, h; batch > 0 &&
5209                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5210                     addToPendingCount(1);
5211                     new ForEachTransformedMappingTask<K,V,U>
5212                         (this, batch >>>= 1, baseLimit = h, f, tab,
5213                          transformer, action).fork();
5214                 }
5215                 for (Node<K,V> p; (p = advance()) != null; ) {
5216                     U u;
5217                     if ((u = transformer.apply(p.key, p.val)) != null)
5218                         action.accept(u);
5219                 }
5220                 propagateCompletion();
5221             }
5222         }
5223     }
5224 
5225     @SuppressWarnings("serial")
5226     static final class SearchKeysTask<K,V,U>
5227         extends BulkTask<K,V,U> {
5228         final Function<? super K, ? extends U> searchFunction;
5229         final AtomicReference<U> result;
SearchKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super K, ? extends U> searchFunction, AtomicReference<U> result)5230         SearchKeysTask
5231             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5232              Function<? super K, ? extends U> searchFunction,
5233              AtomicReference<U> result) {
5234             super(p, b, i, f, t);
5235             this.searchFunction = searchFunction; this.result = result;
5236         }
getRawResult()5237         public final U getRawResult() { return result.get(); }
compute()5238         public final void compute() {
5239             final Function<? super K, ? extends U> searchFunction;
5240             final AtomicReference<U> result;
5241             if ((searchFunction = this.searchFunction) != null &&
5242                 (result = this.result) != null) {
5243                 for (int i = baseIndex, f, h; batch > 0 &&
5244                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5245                     if (result.get() != null)
5246                         return;
5247                     addToPendingCount(1);
5248                     new SearchKeysTask<K,V,U>
5249                         (this, batch >>>= 1, baseLimit = h, f, tab,
5250                          searchFunction, result).fork();
5251                 }
5252                 while (result.get() == null) {
5253                     U u;
5254                     Node<K,V> p;
5255                     if ((p = advance()) == null) {
5256                         propagateCompletion();
5257                         break;
5258                     }
5259                     if ((u = searchFunction.apply(p.key)) != null) {
5260                         if (result.compareAndSet(null, u))
5261                             quietlyCompleteRoot();
5262                         break;
5263                     }
5264                 }
5265             }
5266         }
5267     }
5268 
5269     @SuppressWarnings("serial")
5270     static final class SearchValuesTask<K,V,U>
5271         extends BulkTask<K,V,U> {
5272         final Function<? super V, ? extends U> searchFunction;
5273         final AtomicReference<U> result;
SearchValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super V, ? extends U> searchFunction, AtomicReference<U> result)5274         SearchValuesTask
5275             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5276              Function<? super V, ? extends U> searchFunction,
5277              AtomicReference<U> result) {
5278             super(p, b, i, f, t);
5279             this.searchFunction = searchFunction; this.result = result;
5280         }
getRawResult()5281         public final U getRawResult() { return result.get(); }
compute()5282         public final void compute() {
5283             final Function<? super V, ? extends U> searchFunction;
5284             final AtomicReference<U> result;
5285             if ((searchFunction = this.searchFunction) != null &&
5286                 (result = this.result) != null) {
5287                 for (int i = baseIndex, f, h; batch > 0 &&
5288                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5289                     if (result.get() != null)
5290                         return;
5291                     addToPendingCount(1);
5292                     new SearchValuesTask<K,V,U>
5293                         (this, batch >>>= 1, baseLimit = h, f, tab,
5294                          searchFunction, result).fork();
5295                 }
5296                 while (result.get() == null) {
5297                     U u;
5298                     Node<K,V> p;
5299                     if ((p = advance()) == null) {
5300                         propagateCompletion();
5301                         break;
5302                     }
5303                     if ((u = searchFunction.apply(p.val)) != null) {
5304                         if (result.compareAndSet(null, u))
5305                             quietlyCompleteRoot();
5306                         break;
5307                     }
5308                 }
5309             }
5310         }
5311     }
5312 
5313     @SuppressWarnings("serial")
5314     static final class SearchEntriesTask<K,V,U>
5315         extends BulkTask<K,V,U> {
5316         final Function<Entry<K,V>, ? extends U> searchFunction;
5317         final AtomicReference<U> result;
SearchEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<Entry<K,V>, ? extends U> searchFunction, AtomicReference<U> result)5318         SearchEntriesTask
5319             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5320              Function<Entry<K,V>, ? extends U> searchFunction,
5321              AtomicReference<U> result) {
5322             super(p, b, i, f, t);
5323             this.searchFunction = searchFunction; this.result = result;
5324         }
getRawResult()5325         public final U getRawResult() { return result.get(); }
compute()5326         public final void compute() {
5327             final Function<Entry<K,V>, ? extends U> searchFunction;
5328             final AtomicReference<U> result;
5329             if ((searchFunction = this.searchFunction) != null &&
5330                 (result = this.result) != null) {
5331                 for (int i = baseIndex, f, h; batch > 0 &&
5332                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5333                     if (result.get() != null)
5334                         return;
5335                     addToPendingCount(1);
5336                     new SearchEntriesTask<K,V,U>
5337                         (this, batch >>>= 1, baseLimit = h, f, tab,
5338                          searchFunction, result).fork();
5339                 }
5340                 while (result.get() == null) {
5341                     U u;
5342                     Node<K,V> p;
5343                     if ((p = advance()) == null) {
5344                         propagateCompletion();
5345                         break;
5346                     }
5347                     if ((u = searchFunction.apply(p)) != null) {
5348                         if (result.compareAndSet(null, u))
5349                             quietlyCompleteRoot();
5350                         return;
5351                     }
5352                 }
5353             }
5354         }
5355     }
5356 
5357     @SuppressWarnings("serial")
5358     static final class SearchMappingsTask<K,V,U>
5359         extends BulkTask<K,V,U> {
5360         final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5361         final AtomicReference<U> result;
SearchMappingsTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiFunction<? super K, ? super V, ? extends U> searchFunction, AtomicReference<U> result)5362         SearchMappingsTask
5363             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5364              BiFunction<? super K, ? super V, ? extends U> searchFunction,
5365              AtomicReference<U> result) {
5366             super(p, b, i, f, t);
5367             this.searchFunction = searchFunction; this.result = result;
5368         }
getRawResult()5369         public final U getRawResult() { return result.get(); }
compute()5370         public final void compute() {
5371             final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5372             final AtomicReference<U> result;
5373             if ((searchFunction = this.searchFunction) != null &&
5374                 (result = this.result) != null) {
5375                 for (int i = baseIndex, f, h; batch > 0 &&
5376                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377                     if (result.get() != null)
5378                         return;
5379                     addToPendingCount(1);
5380                     new SearchMappingsTask<K,V,U>
5381                         (this, batch >>>= 1, baseLimit = h, f, tab,
5382                          searchFunction, result).fork();
5383                 }
5384                 while (result.get() == null) {
5385                     U u;
5386                     Node<K,V> p;
5387                     if ((p = advance()) == null) {
5388                         propagateCompletion();
5389                         break;
5390                     }
5391                     if ((u = searchFunction.apply(p.key, p.val)) != null) {
5392                         if (result.compareAndSet(null, u))
5393                             quietlyCompleteRoot();
5394                         break;
5395                     }
5396                 }
5397             }
5398         }
5399     }
5400 
5401     @SuppressWarnings("serial")
5402     static final class ReduceKeysTask<K,V>
5403         extends BulkTask<K,V,K> {
5404         final BiFunction<? super K, ? super K, ? extends K> reducer;
5405         K result;
5406         ReduceKeysTask<K,V> rights, nextRight;
ReduceKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceKeysTask<K,V> nextRight, BiFunction<? super K, ? super K, ? extends K> reducer)5407         ReduceKeysTask
5408             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5409              ReduceKeysTask<K,V> nextRight,
5410              BiFunction<? super K, ? super K, ? extends K> reducer) {
5411             super(p, b, i, f, t); this.nextRight = nextRight;
5412             this.reducer = reducer;
5413         }
getRawResult()5414         public final K getRawResult() { return result; }
compute()5415         public final void compute() {
5416             final BiFunction<? super K, ? super K, ? extends K> reducer;
5417             if ((reducer = this.reducer) != null) {
5418                 for (int i = baseIndex, f, h; batch > 0 &&
5419                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5420                     addToPendingCount(1);
5421                     (rights = new ReduceKeysTask<K,V>
5422                      (this, batch >>>= 1, baseLimit = h, f, tab,
5423                       rights, reducer)).fork();
5424                 }
5425                 K r = null;
5426                 for (Node<K,V> p; (p = advance()) != null; ) {
5427                     K u = p.key;
5428                     r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5429                 }
5430                 result = r;
5431                 CountedCompleter<?> c;
5432                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5433                     @SuppressWarnings("unchecked")
5434                     ReduceKeysTask<K,V>
5435                         t = (ReduceKeysTask<K,V>)c,
5436                         s = t.rights;
5437                     while (s != null) {
5438                         K tr, sr;
5439                         if ((sr = s.result) != null)
5440                             t.result = (((tr = t.result) == null) ? sr :
5441                                         reducer.apply(tr, sr));
5442                         s = t.rights = s.nextRight;
5443                     }
5444                 }
5445             }
5446         }
5447     }
5448 
5449     @SuppressWarnings("serial")
5450     static final class ReduceValuesTask<K,V>
5451         extends BulkTask<K,V,V> {
5452         final BiFunction<? super V, ? super V, ? extends V> reducer;
5453         V result;
5454         ReduceValuesTask<K,V> rights, nextRight;
ReduceValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceValuesTask<K,V> nextRight, BiFunction<? super V, ? super V, ? extends V> reducer)5455         ReduceValuesTask
5456             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5457              ReduceValuesTask<K,V> nextRight,
5458              BiFunction<? super V, ? super V, ? extends V> reducer) {
5459             super(p, b, i, f, t); this.nextRight = nextRight;
5460             this.reducer = reducer;
5461         }
getRawResult()5462         public final V getRawResult() { return result; }
compute()5463         public final void compute() {
5464             final BiFunction<? super V, ? super V, ? extends V> reducer;
5465             if ((reducer = this.reducer) != null) {
5466                 for (int i = baseIndex, f, h; batch > 0 &&
5467                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5468                     addToPendingCount(1);
5469                     (rights = new ReduceValuesTask<K,V>
5470                      (this, batch >>>= 1, baseLimit = h, f, tab,
5471                       rights, reducer)).fork();
5472                 }
5473                 V r = null;
5474                 for (Node<K,V> p; (p = advance()) != null; ) {
5475                     V v = p.val;
5476                     r = (r == null) ? v : reducer.apply(r, v);
5477                 }
5478                 result = r;
5479                 CountedCompleter<?> c;
5480                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5481                     @SuppressWarnings("unchecked")
5482                     ReduceValuesTask<K,V>
5483                         t = (ReduceValuesTask<K,V>)c,
5484                         s = t.rights;
5485                     while (s != null) {
5486                         V tr, sr;
5487                         if ((sr = s.result) != null)
5488                             t.result = (((tr = t.result) == null) ? sr :
5489                                         reducer.apply(tr, sr));
5490                         s = t.rights = s.nextRight;
5491                     }
5492                 }
5493             }
5494         }
5495     }
5496 
5497     @SuppressWarnings("serial")
5498     static final class ReduceEntriesTask<K,V>
5499         extends BulkTask<K,V,Map.Entry<K,V>> {
5500         final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5501         Map.Entry<K,V> result;
5502         ReduceEntriesTask<K,V> rights, nextRight;
ReduceEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceEntriesTask<K,V> nextRight, BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer)5503         ReduceEntriesTask
5504             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5505              ReduceEntriesTask<K,V> nextRight,
5506              BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5507             super(p, b, i, f, t); this.nextRight = nextRight;
5508             this.reducer = reducer;
5509         }
getRawResult()5510         public final Map.Entry<K,V> getRawResult() { return result; }
compute()5511         public final void compute() {
5512             final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5513             if ((reducer = this.reducer) != null) {
5514                 for (int i = baseIndex, f, h; batch > 0 &&
5515                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5516                     addToPendingCount(1);
5517                     (rights = new ReduceEntriesTask<K,V>
5518                      (this, batch >>>= 1, baseLimit = h, f, tab,
5519                       rights, reducer)).fork();
5520                 }
5521                 Map.Entry<K,V> r = null;
5522                 for (Node<K,V> p; (p = advance()) != null; )
5523                     r = (r == null) ? p : reducer.apply(r, p);
5524                 result = r;
5525                 CountedCompleter<?> c;
5526                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527                     @SuppressWarnings("unchecked")
5528                     ReduceEntriesTask<K,V>
5529                         t = (ReduceEntriesTask<K,V>)c,
5530                         s = t.rights;
5531                     while (s != null) {
5532                         Map.Entry<K,V> tr, sr;
5533                         if ((sr = s.result) != null)
5534                             t.result = (((tr = t.result) == null) ? sr :
5535                                         reducer.apply(tr, sr));
5536                         s = t.rights = s.nextRight;
5537                     }
5538                 }
5539             }
5540         }
5541     }
5542 
5543     @SuppressWarnings("serial")
5544     static final class MapReduceKeysTask<K,V,U>
5545         extends BulkTask<K,V,U> {
5546         final Function<? super K, ? extends U> transformer;
5547         final BiFunction<? super U, ? super U, ? extends U> reducer;
5548         U result;
5549         MapReduceKeysTask<K,V,U> rights, nextRight;
MapReduceKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysTask<K,V,U> nextRight, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5550         MapReduceKeysTask
5551             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5552              MapReduceKeysTask<K,V,U> nextRight,
5553              Function<? super K, ? extends U> transformer,
5554              BiFunction<? super U, ? super U, ? extends U> reducer) {
5555             super(p, b, i, f, t); this.nextRight = nextRight;
5556             this.transformer = transformer;
5557             this.reducer = reducer;
5558         }
getRawResult()5559         public final U getRawResult() { return result; }
compute()5560         public final void compute() {
5561             final Function<? super K, ? extends U> transformer;
5562             final BiFunction<? super U, ? super U, ? extends U> reducer;
5563             if ((transformer = this.transformer) != null &&
5564                 (reducer = this.reducer) != null) {
5565                 for (int i = baseIndex, f, h; batch > 0 &&
5566                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5567                     addToPendingCount(1);
5568                     (rights = new MapReduceKeysTask<K,V,U>
5569                      (this, batch >>>= 1, baseLimit = h, f, tab,
5570                       rights, transformer, reducer)).fork();
5571                 }
5572                 U r = null;
5573                 for (Node<K,V> p; (p = advance()) != null; ) {
5574                     U u;
5575                     if ((u = transformer.apply(p.key)) != null)
5576                         r = (r == null) ? u : reducer.apply(r, u);
5577                 }
5578                 result = r;
5579                 CountedCompleter<?> c;
5580                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5581                     @SuppressWarnings("unchecked")
5582                     MapReduceKeysTask<K,V,U>
5583                         t = (MapReduceKeysTask<K,V,U>)c,
5584                         s = t.rights;
5585                     while (s != null) {
5586                         U tr, sr;
5587                         if ((sr = s.result) != null)
5588                             t.result = (((tr = t.result) == null) ? sr :
5589                                         reducer.apply(tr, sr));
5590                         s = t.rights = s.nextRight;
5591                     }
5592                 }
5593             }
5594         }
5595     }
5596 
5597     @SuppressWarnings("serial")
5598     static final class MapReduceValuesTask<K,V,U>
5599         extends BulkTask<K,V,U> {
5600         final Function<? super V, ? extends U> transformer;
5601         final BiFunction<? super U, ? super U, ? extends U> reducer;
5602         U result;
5603         MapReduceValuesTask<K,V,U> rights, nextRight;
MapReduceValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesTask<K,V,U> nextRight, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5604         MapReduceValuesTask
5605             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5606              MapReduceValuesTask<K,V,U> nextRight,
5607              Function<? super V, ? extends U> transformer,
5608              BiFunction<? super U, ? super U, ? extends U> reducer) {
5609             super(p, b, i, f, t); this.nextRight = nextRight;
5610             this.transformer = transformer;
5611             this.reducer = reducer;
5612         }
getRawResult()5613         public final U getRawResult() { return result; }
compute()5614         public final void compute() {
5615             final Function<? super V, ? extends U> transformer;
5616             final BiFunction<? super U, ? super U, ? extends U> reducer;
5617             if ((transformer = this.transformer) != null &&
5618                 (reducer = this.reducer) != null) {
5619                 for (int i = baseIndex, f, h; batch > 0 &&
5620                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5621                     addToPendingCount(1);
5622                     (rights = new MapReduceValuesTask<K,V,U>
5623                      (this, batch >>>= 1, baseLimit = h, f, tab,
5624                       rights, transformer, reducer)).fork();
5625                 }
5626                 U r = null;
5627                 for (Node<K,V> p; (p = advance()) != null; ) {
5628                     U u;
5629                     if ((u = transformer.apply(p.val)) != null)
5630                         r = (r == null) ? u : reducer.apply(r, u);
5631                 }
5632                 result = r;
5633                 CountedCompleter<?> c;
5634                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5635                     @SuppressWarnings("unchecked")
5636                     MapReduceValuesTask<K,V,U>
5637                         t = (MapReduceValuesTask<K,V,U>)c,
5638                         s = t.rights;
5639                     while (s != null) {
5640                         U tr, sr;
5641                         if ((sr = s.result) != null)
5642                             t.result = (((tr = t.result) == null) ? sr :
5643                                         reducer.apply(tr, sr));
5644                         s = t.rights = s.nextRight;
5645                     }
5646                 }
5647             }
5648         }
5649     }
5650 
5651     @SuppressWarnings("serial")
5652     static final class MapReduceEntriesTask<K,V,U>
5653         extends BulkTask<K,V,U> {
5654         final Function<Map.Entry<K,V>, ? extends U> transformer;
5655         final BiFunction<? super U, ? super U, ? extends U> reducer;
5656         U result;
5657         MapReduceEntriesTask<K,V,U> rights, nextRight;
MapReduceEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesTask<K,V,U> nextRight, Function<Map.Entry<K,V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5658         MapReduceEntriesTask
5659             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5660              MapReduceEntriesTask<K,V,U> nextRight,
5661              Function<Map.Entry<K,V>, ? extends U> transformer,
5662              BiFunction<? super U, ? super U, ? extends U> reducer) {
5663             super(p, b, i, f, t); this.nextRight = nextRight;
5664             this.transformer = transformer;
5665             this.reducer = reducer;
5666         }
getRawResult()5667         public final U getRawResult() { return result; }
compute()5668         public final void compute() {
5669             final Function<Map.Entry<K,V>, ? extends U> transformer;
5670             final BiFunction<? super U, ? super U, ? extends U> reducer;
5671             if ((transformer = this.transformer) != null &&
5672                 (reducer = this.reducer) != null) {
5673                 for (int i = baseIndex, f, h; batch > 0 &&
5674                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5675                     addToPendingCount(1);
5676                     (rights = new MapReduceEntriesTask<K,V,U>
5677                      (this, batch >>>= 1, baseLimit = h, f, tab,
5678                       rights, transformer, reducer)).fork();
5679                 }
5680                 U r = null;
5681                 for (Node<K,V> p; (p = advance()) != null; ) {
5682                     U u;
5683                     if ((u = transformer.apply(p)) != null)
5684                         r = (r == null) ? u : reducer.apply(r, u);
5685                 }
5686                 result = r;
5687                 CountedCompleter<?> c;
5688                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5689                     @SuppressWarnings("unchecked")
5690                     MapReduceEntriesTask<K,V,U>
5691                         t = (MapReduceEntriesTask<K,V,U>)c,
5692                         s = t.rights;
5693                     while (s != null) {
5694                         U tr, sr;
5695                         if ((sr = s.result) != null)
5696                             t.result = (((tr = t.result) == null) ? sr :
5697                                         reducer.apply(tr, sr));
5698                         s = t.rights = s.nextRight;
5699                     }
5700                 }
5701             }
5702         }
5703     }
5704 
5705     @SuppressWarnings("serial")
5706     static final class MapReduceMappingsTask<K,V,U>
5707         extends BulkTask<K,V,U> {
5708         final BiFunction<? super K, ? super V, ? extends U> transformer;
5709         final BiFunction<? super U, ? super U, ? extends U> reducer;
5710         U result;
5711         MapReduceMappingsTask<K,V,U> rights, nextRight;
MapReduceMappingsTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsTask<K,V,U> nextRight, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5712         MapReduceMappingsTask
5713             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5714              MapReduceMappingsTask<K,V,U> nextRight,
5715              BiFunction<? super K, ? super V, ? extends U> transformer,
5716              BiFunction<? super U, ? super U, ? extends U> reducer) {
5717             super(p, b, i, f, t); this.nextRight = nextRight;
5718             this.transformer = transformer;
5719             this.reducer = reducer;
5720         }
getRawResult()5721         public final U getRawResult() { return result; }
compute()5722         public final void compute() {
5723             final BiFunction<? super K, ? super V, ? extends U> transformer;
5724             final BiFunction<? super U, ? super U, ? extends U> reducer;
5725             if ((transformer = this.transformer) != null &&
5726                 (reducer = this.reducer) != null) {
5727                 for (int i = baseIndex, f, h; batch > 0 &&
5728                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5729                     addToPendingCount(1);
5730                     (rights = new MapReduceMappingsTask<K,V,U>
5731                      (this, batch >>>= 1, baseLimit = h, f, tab,
5732                       rights, transformer, reducer)).fork();
5733                 }
5734                 U r = null;
5735                 for (Node<K,V> p; (p = advance()) != null; ) {
5736                     U u;
5737                     if ((u = transformer.apply(p.key, p.val)) != null)
5738                         r = (r == null) ? u : reducer.apply(r, u);
5739                 }
5740                 result = r;
5741                 CountedCompleter<?> c;
5742                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5743                     @SuppressWarnings("unchecked")
5744                     MapReduceMappingsTask<K,V,U>
5745                         t = (MapReduceMappingsTask<K,V,U>)c,
5746                         s = t.rights;
5747                     while (s != null) {
5748                         U tr, sr;
5749                         if ((sr = s.result) != null)
5750                             t.result = (((tr = t.result) == null) ? sr :
5751                                         reducer.apply(tr, sr));
5752                         s = t.rights = s.nextRight;
5753                     }
5754                 }
5755             }
5756         }
5757     }
5758 
5759     @SuppressWarnings("serial")
5760     static final class MapReduceKeysToDoubleTask<K,V>
5761         extends BulkTask<K,V,Double> {
5762         final ToDoubleFunction<? super K> transformer;
5763         final DoubleBinaryOperator reducer;
5764         final double basis;
5765         double result;
5766         MapReduceKeysToDoubleTask<K,V> rights, nextRight;
MapReduceKeysToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToDoubleTask<K,V> nextRight, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer)5767         MapReduceKeysToDoubleTask
5768             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5769              MapReduceKeysToDoubleTask<K,V> nextRight,
5770              ToDoubleFunction<? super K> transformer,
5771              double basis,
5772              DoubleBinaryOperator reducer) {
5773             super(p, b, i, f, t); this.nextRight = nextRight;
5774             this.transformer = transformer;
5775             this.basis = basis; this.reducer = reducer;
5776         }
getRawResult()5777         public final Double getRawResult() { return result; }
compute()5778         public final void compute() {
5779             final ToDoubleFunction<? super K> transformer;
5780             final DoubleBinaryOperator reducer;
5781             if ((transformer = this.transformer) != null &&
5782                 (reducer = this.reducer) != null) {
5783                 double r = this.basis;
5784                 for (int i = baseIndex, f, h; batch > 0 &&
5785                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5786                     addToPendingCount(1);
5787                     (rights = new MapReduceKeysToDoubleTask<K,V>
5788                      (this, batch >>>= 1, baseLimit = h, f, tab,
5789                       rights, transformer, r, reducer)).fork();
5790                 }
5791                 for (Node<K,V> p; (p = advance()) != null; )
5792                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5793                 result = r;
5794                 CountedCompleter<?> c;
5795                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5796                     @SuppressWarnings("unchecked")
5797                     MapReduceKeysToDoubleTask<K,V>
5798                         t = (MapReduceKeysToDoubleTask<K,V>)c,
5799                         s = t.rights;
5800                     while (s != null) {
5801                         t.result = reducer.applyAsDouble(t.result, s.result);
5802                         s = t.rights = s.nextRight;
5803                     }
5804                 }
5805             }
5806         }
5807     }
5808 
5809     @SuppressWarnings("serial")
5810     static final class MapReduceValuesToDoubleTask<K,V>
5811         extends BulkTask<K,V,Double> {
5812         final ToDoubleFunction<? super V> transformer;
5813         final DoubleBinaryOperator reducer;
5814         final double basis;
5815         double result;
5816         MapReduceValuesToDoubleTask<K,V> rights, nextRight;
MapReduceValuesToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToDoubleTask<K,V> nextRight, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer)5817         MapReduceValuesToDoubleTask
5818             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5819              MapReduceValuesToDoubleTask<K,V> nextRight,
5820              ToDoubleFunction<? super V> transformer,
5821              double basis,
5822              DoubleBinaryOperator reducer) {
5823             super(p, b, i, f, t); this.nextRight = nextRight;
5824             this.transformer = transformer;
5825             this.basis = basis; this.reducer = reducer;
5826         }
getRawResult()5827         public final Double getRawResult() { return result; }
compute()5828         public final void compute() {
5829             final ToDoubleFunction<? super V> transformer;
5830             final DoubleBinaryOperator reducer;
5831             if ((transformer = this.transformer) != null &&
5832                 (reducer = this.reducer) != null) {
5833                 double r = this.basis;
5834                 for (int i = baseIndex, f, h; batch > 0 &&
5835                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5836                     addToPendingCount(1);
5837                     (rights = new MapReduceValuesToDoubleTask<K,V>
5838                      (this, batch >>>= 1, baseLimit = h, f, tab,
5839                       rights, transformer, r, reducer)).fork();
5840                 }
5841                 for (Node<K,V> p; (p = advance()) != null; )
5842                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5843                 result = r;
5844                 CountedCompleter<?> c;
5845                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5846                     @SuppressWarnings("unchecked")
5847                     MapReduceValuesToDoubleTask<K,V>
5848                         t = (MapReduceValuesToDoubleTask<K,V>)c,
5849                         s = t.rights;
5850                     while (s != null) {
5851                         t.result = reducer.applyAsDouble(t.result, s.result);
5852                         s = t.rights = s.nextRight;
5853                     }
5854                 }
5855             }
5856         }
5857     }
5858 
5859     @SuppressWarnings("serial")
5860     static final class MapReduceEntriesToDoubleTask<K,V>
5861         extends BulkTask<K,V,Double> {
5862         final ToDoubleFunction<Map.Entry<K,V>> transformer;
5863         final DoubleBinaryOperator reducer;
5864         final double basis;
5865         double result;
5866         MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
MapReduceEntriesToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToDoubleTask<K,V> nextRight, ToDoubleFunction<Map.Entry<K,V>> transformer, double basis, DoubleBinaryOperator reducer)5867         MapReduceEntriesToDoubleTask
5868             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5869              MapReduceEntriesToDoubleTask<K,V> nextRight,
5870              ToDoubleFunction<Map.Entry<K,V>> transformer,
5871              double basis,
5872              DoubleBinaryOperator reducer) {
5873             super(p, b, i, f, t); this.nextRight = nextRight;
5874             this.transformer = transformer;
5875             this.basis = basis; this.reducer = reducer;
5876         }
getRawResult()5877         public final Double getRawResult() { return result; }
compute()5878         public final void compute() {
5879             final ToDoubleFunction<Map.Entry<K,V>> transformer;
5880             final DoubleBinaryOperator reducer;
5881             if ((transformer = this.transformer) != null &&
5882                 (reducer = this.reducer) != null) {
5883                 double r = this.basis;
5884                 for (int i = baseIndex, f, h; batch > 0 &&
5885                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5886                     addToPendingCount(1);
5887                     (rights = new MapReduceEntriesToDoubleTask<K,V>
5888                      (this, batch >>>= 1, baseLimit = h, f, tab,
5889                       rights, transformer, r, reducer)).fork();
5890                 }
5891                 for (Node<K,V> p; (p = advance()) != null; )
5892                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5893                 result = r;
5894                 CountedCompleter<?> c;
5895                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5896                     @SuppressWarnings("unchecked")
5897                     MapReduceEntriesToDoubleTask<K,V>
5898                         t = (MapReduceEntriesToDoubleTask<K,V>)c,
5899                         s = t.rights;
5900                     while (s != null) {
5901                         t.result = reducer.applyAsDouble(t.result, s.result);
5902                         s = t.rights = s.nextRight;
5903                     }
5904                 }
5905             }
5906         }
5907     }
5908 
5909     @SuppressWarnings("serial")
5910     static final class MapReduceMappingsToDoubleTask<K,V>
5911         extends BulkTask<K,V,Double> {
5912         final ToDoubleBiFunction<? super K, ? super V> transformer;
5913         final DoubleBinaryOperator reducer;
5914         final double basis;
5915         double result;
5916         MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
MapReduceMappingsToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToDoubleTask<K,V> nextRight, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer)5917         MapReduceMappingsToDoubleTask
5918             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5919              MapReduceMappingsToDoubleTask<K,V> nextRight,
5920              ToDoubleBiFunction<? super K, ? super V> transformer,
5921              double basis,
5922              DoubleBinaryOperator reducer) {
5923             super(p, b, i, f, t); this.nextRight = nextRight;
5924             this.transformer = transformer;
5925             this.basis = basis; this.reducer = reducer;
5926         }
getRawResult()5927         public final Double getRawResult() { return result; }
compute()5928         public final void compute() {
5929             final ToDoubleBiFunction<? super K, ? super V> transformer;
5930             final DoubleBinaryOperator reducer;
5931             if ((transformer = this.transformer) != null &&
5932                 (reducer = this.reducer) != null) {
5933                 double r = this.basis;
5934                 for (int i = baseIndex, f, h; batch > 0 &&
5935                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5936                     addToPendingCount(1);
5937                     (rights = new MapReduceMappingsToDoubleTask<K,V>
5938                      (this, batch >>>= 1, baseLimit = h, f, tab,
5939                       rights, transformer, r, reducer)).fork();
5940                 }
5941                 for (Node<K,V> p; (p = advance()) != null; )
5942                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5943                 result = r;
5944                 CountedCompleter<?> c;
5945                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5946                     @SuppressWarnings("unchecked")
5947                     MapReduceMappingsToDoubleTask<K,V>
5948                         t = (MapReduceMappingsToDoubleTask<K,V>)c,
5949                         s = t.rights;
5950                     while (s != null) {
5951                         t.result = reducer.applyAsDouble(t.result, s.result);
5952                         s = t.rights = s.nextRight;
5953                     }
5954                 }
5955             }
5956         }
5957     }
5958 
5959     @SuppressWarnings("serial")
5960     static final class MapReduceKeysToLongTask<K,V>
5961         extends BulkTask<K,V,Long> {
5962         final ToLongFunction<? super K> transformer;
5963         final LongBinaryOperator reducer;
5964         final long basis;
5965         long result;
5966         MapReduceKeysToLongTask<K,V> rights, nextRight;
MapReduceKeysToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToLongTask<K,V> nextRight, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer)5967         MapReduceKeysToLongTask
5968             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5969              MapReduceKeysToLongTask<K,V> nextRight,
5970              ToLongFunction<? super K> transformer,
5971              long basis,
5972              LongBinaryOperator reducer) {
5973             super(p, b, i, f, t); this.nextRight = nextRight;
5974             this.transformer = transformer;
5975             this.basis = basis; this.reducer = reducer;
5976         }
getRawResult()5977         public final Long getRawResult() { return result; }
compute()5978         public final void compute() {
5979             final ToLongFunction<? super K> transformer;
5980             final LongBinaryOperator reducer;
5981             if ((transformer = this.transformer) != null &&
5982                 (reducer = this.reducer) != null) {
5983                 long r = this.basis;
5984                 for (int i = baseIndex, f, h; batch > 0 &&
5985                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5986                     addToPendingCount(1);
5987                     (rights = new MapReduceKeysToLongTask<K,V>
5988                      (this, batch >>>= 1, baseLimit = h, f, tab,
5989                       rights, transformer, r, reducer)).fork();
5990                 }
5991                 for (Node<K,V> p; (p = advance()) != null; )
5992                     r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5993                 result = r;
5994                 CountedCompleter<?> c;
5995                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5996                     @SuppressWarnings("unchecked")
5997                     MapReduceKeysToLongTask<K,V>
5998                         t = (MapReduceKeysToLongTask<K,V>)c,
5999                         s = t.rights;
6000                     while (s != null) {
6001                         t.result = reducer.applyAsLong(t.result, s.result);
6002                         s = t.rights = s.nextRight;
6003                     }
6004                 }
6005             }
6006         }
6007     }
6008 
6009     @SuppressWarnings("serial")
6010     static final class MapReduceValuesToLongTask<K,V>
6011         extends BulkTask<K,V,Long> {
6012         final ToLongFunction<? super V> transformer;
6013         final LongBinaryOperator reducer;
6014         final long basis;
6015         long result;
6016         MapReduceValuesToLongTask<K,V> rights, nextRight;
MapReduceValuesToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToLongTask<K,V> nextRight, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer)6017         MapReduceValuesToLongTask
6018             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6019              MapReduceValuesToLongTask<K,V> nextRight,
6020              ToLongFunction<? super V> transformer,
6021              long basis,
6022              LongBinaryOperator reducer) {
6023             super(p, b, i, f, t); this.nextRight = nextRight;
6024             this.transformer = transformer;
6025             this.basis = basis; this.reducer = reducer;
6026         }
getRawResult()6027         public final Long getRawResult() { return result; }
compute()6028         public final void compute() {
6029             final ToLongFunction<? super V> transformer;
6030             final LongBinaryOperator reducer;
6031             if ((transformer = this.transformer) != null &&
6032                 (reducer = this.reducer) != null) {
6033                 long r = this.basis;
6034                 for (int i = baseIndex, f, h; batch > 0 &&
6035                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6036                     addToPendingCount(1);
6037                     (rights = new MapReduceValuesToLongTask<K,V>
6038                      (this, batch >>>= 1, baseLimit = h, f, tab,
6039                       rights, transformer, r, reducer)).fork();
6040                 }
6041                 for (Node<K,V> p; (p = advance()) != null; )
6042                     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6043                 result = r;
6044                 CountedCompleter<?> c;
6045                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6046                     @SuppressWarnings("unchecked")
6047                     MapReduceValuesToLongTask<K,V>
6048                         t = (MapReduceValuesToLongTask<K,V>)c,
6049                         s = t.rights;
6050                     while (s != null) {
6051                         t.result = reducer.applyAsLong(t.result, s.result);
6052                         s = t.rights = s.nextRight;
6053                     }
6054                 }
6055             }
6056         }
6057     }
6058 
6059     @SuppressWarnings("serial")
6060     static final class MapReduceEntriesToLongTask<K,V>
6061         extends BulkTask<K,V,Long> {
6062         final ToLongFunction<Map.Entry<K,V>> transformer;
6063         final LongBinaryOperator reducer;
6064         final long basis;
6065         long result;
6066         MapReduceEntriesToLongTask<K,V> rights, nextRight;
MapReduceEntriesToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToLongTask<K,V> nextRight, ToLongFunction<Map.Entry<K,V>> transformer, long basis, LongBinaryOperator reducer)6067         MapReduceEntriesToLongTask
6068             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6069              MapReduceEntriesToLongTask<K,V> nextRight,
6070              ToLongFunction<Map.Entry<K,V>> transformer,
6071              long basis,
6072              LongBinaryOperator reducer) {
6073             super(p, b, i, f, t); this.nextRight = nextRight;
6074             this.transformer = transformer;
6075             this.basis = basis; this.reducer = reducer;
6076         }
getRawResult()6077         public final Long getRawResult() { return result; }
compute()6078         public final void compute() {
6079             final ToLongFunction<Map.Entry<K,V>> transformer;
6080             final LongBinaryOperator reducer;
6081             if ((transformer = this.transformer) != null &&
6082                 (reducer = this.reducer) != null) {
6083                 long r = this.basis;
6084                 for (int i = baseIndex, f, h; batch > 0 &&
6085                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6086                     addToPendingCount(1);
6087                     (rights = new MapReduceEntriesToLongTask<K,V>
6088                      (this, batch >>>= 1, baseLimit = h, f, tab,
6089                       rights, transformer, r, reducer)).fork();
6090                 }
6091                 for (Node<K,V> p; (p = advance()) != null; )
6092                     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6093                 result = r;
6094                 CountedCompleter<?> c;
6095                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6096                     @SuppressWarnings("unchecked")
6097                     MapReduceEntriesToLongTask<K,V>
6098                         t = (MapReduceEntriesToLongTask<K,V>)c,
6099                         s = t.rights;
6100                     while (s != null) {
6101                         t.result = reducer.applyAsLong(t.result, s.result);
6102                         s = t.rights = s.nextRight;
6103                     }
6104                 }
6105             }
6106         }
6107     }
6108 
6109     @SuppressWarnings("serial")
6110     static final class MapReduceMappingsToLongTask<K,V>
6111         extends BulkTask<K,V,Long> {
6112         final ToLongBiFunction<? super K, ? super V> transformer;
6113         final LongBinaryOperator reducer;
6114         final long basis;
6115         long result;
6116         MapReduceMappingsToLongTask<K,V> rights, nextRight;
MapReduceMappingsToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToLongTask<K,V> nextRight, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer)6117         MapReduceMappingsToLongTask
6118             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6119              MapReduceMappingsToLongTask<K,V> nextRight,
6120              ToLongBiFunction<? super K, ? super V> transformer,
6121              long basis,
6122              LongBinaryOperator reducer) {
6123             super(p, b, i, f, t); this.nextRight = nextRight;
6124             this.transformer = transformer;
6125             this.basis = basis; this.reducer = reducer;
6126         }
getRawResult()6127         public final Long getRawResult() { return result; }
compute()6128         public final void compute() {
6129             final ToLongBiFunction<? super K, ? super V> transformer;
6130             final LongBinaryOperator reducer;
6131             if ((transformer = this.transformer) != null &&
6132                 (reducer = this.reducer) != null) {
6133                 long r = this.basis;
6134                 for (int i = baseIndex, f, h; batch > 0 &&
6135                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6136                     addToPendingCount(1);
6137                     (rights = new MapReduceMappingsToLongTask<K,V>
6138                      (this, batch >>>= 1, baseLimit = h, f, tab,
6139                       rights, transformer, r, reducer)).fork();
6140                 }
6141                 for (Node<K,V> p; (p = advance()) != null; )
6142                     r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6143                 result = r;
6144                 CountedCompleter<?> c;
6145                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6146                     @SuppressWarnings("unchecked")
6147                     MapReduceMappingsToLongTask<K,V>
6148                         t = (MapReduceMappingsToLongTask<K,V>)c,
6149                         s = t.rights;
6150                     while (s != null) {
6151                         t.result = reducer.applyAsLong(t.result, s.result);
6152                         s = t.rights = s.nextRight;
6153                     }
6154                 }
6155             }
6156         }
6157     }
6158 
6159     @SuppressWarnings("serial")
6160     static final class MapReduceKeysToIntTask<K,V>
6161         extends BulkTask<K,V,Integer> {
6162         final ToIntFunction<? super K> transformer;
6163         final IntBinaryOperator reducer;
6164         final int basis;
6165         int result;
6166         MapReduceKeysToIntTask<K,V> rights, nextRight;
MapReduceKeysToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToIntTask<K,V> nextRight, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer)6167         MapReduceKeysToIntTask
6168             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6169              MapReduceKeysToIntTask<K,V> nextRight,
6170              ToIntFunction<? super K> transformer,
6171              int basis,
6172              IntBinaryOperator reducer) {
6173             super(p, b, i, f, t); this.nextRight = nextRight;
6174             this.transformer = transformer;
6175             this.basis = basis; this.reducer = reducer;
6176         }
getRawResult()6177         public final Integer getRawResult() { return result; }
compute()6178         public final void compute() {
6179             final ToIntFunction<? super K> transformer;
6180             final IntBinaryOperator reducer;
6181             if ((transformer = this.transformer) != null &&
6182                 (reducer = this.reducer) != null) {
6183                 int r = this.basis;
6184                 for (int i = baseIndex, f, h; batch > 0 &&
6185                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6186                     addToPendingCount(1);
6187                     (rights = new MapReduceKeysToIntTask<K,V>
6188                      (this, batch >>>= 1, baseLimit = h, f, tab,
6189                       rights, transformer, r, reducer)).fork();
6190                 }
6191                 for (Node<K,V> p; (p = advance()) != null; )
6192                     r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6193                 result = r;
6194                 CountedCompleter<?> c;
6195                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6196                     @SuppressWarnings("unchecked")
6197                     MapReduceKeysToIntTask<K,V>
6198                         t = (MapReduceKeysToIntTask<K,V>)c,
6199                         s = t.rights;
6200                     while (s != null) {
6201                         t.result = reducer.applyAsInt(t.result, s.result);
6202                         s = t.rights = s.nextRight;
6203                     }
6204                 }
6205             }
6206         }
6207     }
6208 
6209     @SuppressWarnings("serial")
6210     static final class MapReduceValuesToIntTask<K,V>
6211         extends BulkTask<K,V,Integer> {
6212         final ToIntFunction<? super V> transformer;
6213         final IntBinaryOperator reducer;
6214         final int basis;
6215         int result;
6216         MapReduceValuesToIntTask<K,V> rights, nextRight;
MapReduceValuesToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToIntTask<K,V> nextRight, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer)6217         MapReduceValuesToIntTask
6218             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6219              MapReduceValuesToIntTask<K,V> nextRight,
6220              ToIntFunction<? super V> transformer,
6221              int basis,
6222              IntBinaryOperator reducer) {
6223             super(p, b, i, f, t); this.nextRight = nextRight;
6224             this.transformer = transformer;
6225             this.basis = basis; this.reducer = reducer;
6226         }
getRawResult()6227         public final Integer getRawResult() { return result; }
compute()6228         public final void compute() {
6229             final ToIntFunction<? super V> transformer;
6230             final IntBinaryOperator reducer;
6231             if ((transformer = this.transformer) != null &&
6232                 (reducer = this.reducer) != null) {
6233                 int r = this.basis;
6234                 for (int i = baseIndex, f, h; batch > 0 &&
6235                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6236                     addToPendingCount(1);
6237                     (rights = new MapReduceValuesToIntTask<K,V>
6238                      (this, batch >>>= 1, baseLimit = h, f, tab,
6239                       rights, transformer, r, reducer)).fork();
6240                 }
6241                 for (Node<K,V> p; (p = advance()) != null; )
6242                     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6243                 result = r;
6244                 CountedCompleter<?> c;
6245                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6246                     @SuppressWarnings("unchecked")
6247                     MapReduceValuesToIntTask<K,V>
6248                         t = (MapReduceValuesToIntTask<K,V>)c,
6249                         s = t.rights;
6250                     while (s != null) {
6251                         t.result = reducer.applyAsInt(t.result, s.result);
6252                         s = t.rights = s.nextRight;
6253                     }
6254                 }
6255             }
6256         }
6257     }
6258 
6259     @SuppressWarnings("serial")
6260     static final class MapReduceEntriesToIntTask<K,V>
6261         extends BulkTask<K,V,Integer> {
6262         final ToIntFunction<Map.Entry<K,V>> transformer;
6263         final IntBinaryOperator reducer;
6264         final int basis;
6265         int result;
6266         MapReduceEntriesToIntTask<K,V> rights, nextRight;
MapReduceEntriesToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToIntTask<K,V> nextRight, ToIntFunction<Map.Entry<K,V>> transformer, int basis, IntBinaryOperator reducer)6267         MapReduceEntriesToIntTask
6268             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6269              MapReduceEntriesToIntTask<K,V> nextRight,
6270              ToIntFunction<Map.Entry<K,V>> transformer,
6271              int basis,
6272              IntBinaryOperator reducer) {
6273             super(p, b, i, f, t); this.nextRight = nextRight;
6274             this.transformer = transformer;
6275             this.basis = basis; this.reducer = reducer;
6276         }
getRawResult()6277         public final Integer getRawResult() { return result; }
compute()6278         public final void compute() {
6279             final ToIntFunction<Map.Entry<K,V>> transformer;
6280             final IntBinaryOperator reducer;
6281             if ((transformer = this.transformer) != null &&
6282                 (reducer = this.reducer) != null) {
6283                 int r = this.basis;
6284                 for (int i = baseIndex, f, h; batch > 0 &&
6285                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6286                     addToPendingCount(1);
6287                     (rights = new MapReduceEntriesToIntTask<K,V>
6288                      (this, batch >>>= 1, baseLimit = h, f, tab,
6289                       rights, transformer, r, reducer)).fork();
6290                 }
6291                 for (Node<K,V> p; (p = advance()) != null; )
6292                     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6293                 result = r;
6294                 CountedCompleter<?> c;
6295                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6296                     @SuppressWarnings("unchecked")
6297                     MapReduceEntriesToIntTask<K,V>
6298                         t = (MapReduceEntriesToIntTask<K,V>)c,
6299                         s = t.rights;
6300                     while (s != null) {
6301                         t.result = reducer.applyAsInt(t.result, s.result);
6302                         s = t.rights = s.nextRight;
6303                     }
6304                 }
6305             }
6306         }
6307     }
6308 
6309     @SuppressWarnings("serial")
6310     static final class MapReduceMappingsToIntTask<K,V>
6311         extends BulkTask<K,V,Integer> {
6312         final ToIntBiFunction<? super K, ? super V> transformer;
6313         final IntBinaryOperator reducer;
6314         final int basis;
6315         int result;
6316         MapReduceMappingsToIntTask<K,V> rights, nextRight;
MapReduceMappingsToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToIntTask<K,V> nextRight, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer)6317         MapReduceMappingsToIntTask
6318             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6319              MapReduceMappingsToIntTask<K,V> nextRight,
6320              ToIntBiFunction<? super K, ? super V> transformer,
6321              int basis,
6322              IntBinaryOperator reducer) {
6323             super(p, b, i, f, t); this.nextRight = nextRight;
6324             this.transformer = transformer;
6325             this.basis = basis; this.reducer = reducer;
6326         }
getRawResult()6327         public final Integer getRawResult() { return result; }
compute()6328         public final void compute() {
6329             final ToIntBiFunction<? super K, ? super V> transformer;
6330             final IntBinaryOperator reducer;
6331             if ((transformer = this.transformer) != null &&
6332                 (reducer = this.reducer) != null) {
6333                 int r = this.basis;
6334                 for (int i = baseIndex, f, h; batch > 0 &&
6335                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6336                     addToPendingCount(1);
6337                     (rights = new MapReduceMappingsToIntTask<K,V>
6338                      (this, batch >>>= 1, baseLimit = h, f, tab,
6339                       rights, transformer, r, reducer)).fork();
6340                 }
6341                 for (Node<K,V> p; (p = advance()) != null; )
6342                     r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6343                 result = r;
6344                 CountedCompleter<?> c;
6345                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6346                     @SuppressWarnings("unchecked")
6347                     MapReduceMappingsToIntTask<K,V>
6348                         t = (MapReduceMappingsToIntTask<K,V>)c,
6349                         s = t.rights;
6350                     while (s != null) {
6351                         t.result = reducer.applyAsInt(t.result, s.result);
6352                         s = t.rights = s.nextRight;
6353                     }
6354                 }
6355             }
6356         }
6357     }
6358 
6359     // Unsafe mechanics
6360     private static final Unsafe U = Unsafe.getUnsafe();
6361     private static final long SIZECTL
6362         = U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
6363     private static final long TRANSFERINDEX
6364         = U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
6365     private static final long BASECOUNT
6366         = U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
6367     private static final long CELLSBUSY
6368         = U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
6369     private static final long CELLVALUE
6370         = U.objectFieldOffset(CounterCell.class, "value");
6371     private static final int ABASE = U.arrayBaseOffset(Node[].class);
6372     private static final int ASHIFT;
6373 
6374     static {
6375         int scale = U.arrayIndexScale(Node[].class);
6376         if ((scale & (scale - 1)) != 0)
6377             throw new ExceptionInInitializerError("array index scale not a power of two");
6378         ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6379 
6380         // Reduce the risk of rare disastrous classloading in first call to
6381         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6382         Class<?> ensureLoaded = LockSupport.class;
6383 
6384         // Eager class load observed to help JIT during startup
6385         ensureLoaded = ReservationNode.class;
6386     }
6387 }
6388