1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 import java.lang.invoke.MethodHandles; 39 import java.lang.invoke.VarHandle; 40 import java.util.AbstractQueue; 41 import java.util.Arrays; 42 import java.util.Collection; 43 import java.util.Comparator; 44 import java.util.Iterator; 45 import java.util.NoSuchElementException; 46 import java.util.Objects; 47 import java.util.PriorityQueue; 48 import java.util.Queue; 49 import java.util.SortedSet; 50 import java.util.Spliterator; 51 import java.util.concurrent.locks.Condition; 52 import java.util.concurrent.locks.ReentrantLock; 53 import java.util.function.Consumer; 54 import java.util.function.Predicate; 55 import jdk.internal.access.SharedSecrets; 56 import jdk.internal.util.ArraysSupport; 57 58 /** 59 * An unbounded {@linkplain BlockingQueue blocking queue} that uses 60 * the same ordering rules as class {@link PriorityQueue} and supplies 61 * blocking retrieval operations. While this queue is logically 62 * unbounded, attempted additions may fail due to resource exhaustion 63 * (causing {@code OutOfMemoryError}). This class does not permit 64 * {@code null} elements. A priority queue relying on {@linkplain 65 * Comparable natural ordering} also does not permit insertion of 66 * non-comparable objects (doing so results in 67 * {@code ClassCastException}). 68 * 69 * <p>This class and its iterator implement all of the <em>optional</em> 70 * methods of the {@link Collection} and {@link Iterator} interfaces. 71 * The Iterator provided in method {@link #iterator()} and the 72 * Spliterator provided in method {@link #spliterator()} are <em>not</em> 73 * guaranteed to traverse the elements of the PriorityBlockingQueue in 74 * any particular order. If you need ordered traversal, consider using 75 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can 76 * be used to <em>remove</em> some or all elements in priority order and 77 * place them in another collection. 78 * 79 * <p>Operations on this class make no guarantees about the ordering 80 * of elements with equal priority. If you need to enforce an 81 * ordering, you can define custom classes or comparators that use a 82 * secondary key to break ties in primary priority values. For 83 * example, here is a class that applies first-in-first-out 84 * tie-breaking to comparable elements. To use it, you would insert a 85 * {@code new FIFOEntry(anEntry)} instead of a plain entry object. 86 * 87 * <pre> {@code 88 * class FIFOEntry<E extends Comparable<? super E>> 89 * implements Comparable<FIFOEntry<E>> { 90 * static final AtomicLong seq = new AtomicLong(); 91 * final long seqNum; 92 * final E entry; 93 * public FIFOEntry(E entry) { 94 * seqNum = seq.getAndIncrement(); 95 * this.entry = entry; 96 * } 97 * public E getEntry() { return entry; } 98 * public int compareTo(FIFOEntry<E> other) { 99 * int res = entry.compareTo(other.entry); 100 * if (res == 0 && other.entry != this.entry) 101 * res = (seqNum < other.seqNum ? -1 : 1); 102 * return res; 103 * } 104 * }}</pre> 105 * 106 * <p>This class is a member of the 107 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> 108 * Java Collections Framework</a>. 109 * 110 * @since 1.5 111 * @author Doug Lea 112 * @param <E> the type of elements held in this queue 113 */ 114 @SuppressWarnings("unchecked") 115 public class PriorityBlockingQueue<E> extends AbstractQueue<E> 116 implements BlockingQueue<E>, java.io.Serializable { 117 private static final long serialVersionUID = 5595510919245408276L; 118 119 /* 120 * The implementation uses an array-based binary heap, with public 121 * operations protected with a single lock. However, allocation 122 * during resizing uses a simple spinlock (used only while not 123 * holding main lock) in order to allow takes to operate 124 * concurrently with allocation. This avoids repeated 125 * postponement of waiting consumers and consequent element 126 * build-up. The need to back away from lock during allocation 127 * makes it impossible to simply wrap delegated 128 * java.util.PriorityQueue operations within a lock, as was done 129 * in a previous version of this class. To maintain 130 * interoperability, a plain PriorityQueue is still used during 131 * serialization, which maintains compatibility at the expense of 132 * transiently doubling overhead. 133 */ 134 135 /** 136 * Default array capacity. 137 */ 138 private static final int DEFAULT_INITIAL_CAPACITY = 11; 139 140 /** 141 * Priority queue represented as a balanced binary heap: the two 142 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The 143 * priority queue is ordered by comparator, or by the elements' 144 * natural ordering, if comparator is null: For each node n in the 145 * heap and each descendant d of n, n <= d. The element with the 146 * lowest value is in queue[0], assuming the queue is nonempty. 147 */ 148 private transient Object[] queue; 149 150 /** 151 * The number of elements in the priority queue. 152 */ 153 private transient int size; 154 155 /** 156 * The comparator, or null if priority queue uses elements' 157 * natural ordering. 158 */ 159 private transient Comparator<? super E> comparator; 160 161 /** 162 * Lock used for all public operations. 163 */ 164 private final ReentrantLock lock = new ReentrantLock(); 165 166 /** 167 * Condition for blocking when empty. 168 */ 169 @SuppressWarnings("serial") // Classes implementing Condition may be serializable. 170 private final Condition notEmpty = lock.newCondition(); 171 172 /** 173 * Spinlock for allocation, acquired via CAS. 174 */ 175 private transient volatile int allocationSpinLock; 176 177 /** 178 * A plain PriorityQueue used only for serialization, 179 * to maintain compatibility with previous versions 180 * of this class. Non-null only during serialization/deserialization. 181 */ 182 private PriorityQueue<E> q; 183 184 /** 185 * Creates a {@code PriorityBlockingQueue} with the default 186 * initial capacity (11) that orders its elements according to 187 * their {@linkplain Comparable natural ordering}. 188 */ PriorityBlockingQueue()189 public PriorityBlockingQueue() { 190 this(DEFAULT_INITIAL_CAPACITY, null); 191 } 192 193 /** 194 * Creates a {@code PriorityBlockingQueue} with the specified 195 * initial capacity that orders its elements according to their 196 * {@linkplain Comparable natural ordering}. 197 * 198 * @param initialCapacity the initial capacity for this priority queue 199 * @throws IllegalArgumentException if {@code initialCapacity} is less 200 * than 1 201 */ PriorityBlockingQueue(int initialCapacity)202 public PriorityBlockingQueue(int initialCapacity) { 203 this(initialCapacity, null); 204 } 205 206 /** 207 * Creates a {@code PriorityBlockingQueue} with the specified initial 208 * capacity that orders its elements according to the specified 209 * comparator. 210 * 211 * @param initialCapacity the initial capacity for this priority queue 212 * @param comparator the comparator that will be used to order this 213 * priority queue. If {@code null}, the {@linkplain Comparable 214 * natural ordering} of the elements will be used. 215 * @throws IllegalArgumentException if {@code initialCapacity} is less 216 * than 1 217 */ PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator)218 public PriorityBlockingQueue(int initialCapacity, 219 Comparator<? super E> comparator) { 220 if (initialCapacity < 1) 221 throw new IllegalArgumentException(); 222 this.comparator = comparator; 223 this.queue = new Object[Math.max(1, initialCapacity)]; 224 } 225 226 /** 227 * Creates a {@code PriorityBlockingQueue} containing the elements 228 * in the specified collection. If the specified collection is a 229 * {@link SortedSet} or a {@link PriorityBlockingQueue}, this 230 * priority queue will be ordered according to the same ordering. 231 * Otherwise, this priority queue will be ordered according to the 232 * {@linkplain Comparable natural ordering} of its elements. 233 * 234 * @param c the collection whose elements are to be placed 235 * into this priority queue 236 * @throws ClassCastException if elements of the specified collection 237 * cannot be compared to one another according to the priority 238 * queue's ordering 239 * @throws NullPointerException if the specified collection or any 240 * of its elements are null 241 */ PriorityBlockingQueue(Collection<? extends E> c)242 public PriorityBlockingQueue(Collection<? extends E> c) { 243 boolean heapify = true; // true if not known to be in heap order 244 boolean screen = true; // true if must screen for nulls 245 if (c instanceof SortedSet<?>) { 246 SortedSet<? extends E> ss = (SortedSet<? extends E>) c; 247 this.comparator = (Comparator<? super E>) ss.comparator(); 248 heapify = false; 249 } 250 else if (c instanceof PriorityBlockingQueue<?>) { 251 PriorityBlockingQueue<? extends E> pq = 252 (PriorityBlockingQueue<? extends E>) c; 253 this.comparator = (Comparator<? super E>) pq.comparator(); 254 screen = false; 255 if (pq.getClass() == PriorityBlockingQueue.class) // exact match 256 heapify = false; 257 } 258 Object[] es = c.toArray(); 259 int n = es.length; 260 // Android-changed: Defend against c.toArray (incorrectly) not returning Object[] 261 // (see b/204397945) 262 // if (c.getClass() != java.util.ArrayList.class) 263 if (es.getClass() != Object[].class) 264 es = Arrays.copyOf(es, n, Object[].class); 265 if (screen && (n == 1 || this.comparator != null)) { 266 for (Object e : es) 267 if (e == null) 268 throw new NullPointerException(); 269 } 270 this.queue = ensureNonEmpty(es); 271 this.size = n; 272 if (heapify) 273 heapify(); 274 } 275 276 /** Ensures that queue[0] exists, helping peek() and poll(). */ ensureNonEmpty(Object[] es)277 private static Object[] ensureNonEmpty(Object[] es) { 278 return (es.length > 0) ? es : new Object[1]; 279 } 280 281 /** 282 * Tries to grow array to accommodate at least one more element 283 * (but normally expand by about 50%), giving up (allowing retry) 284 * on contention (which we expect to be rare). Call only while 285 * holding lock. 286 * 287 * @param array the heap array 288 * @param oldCap the length of the array 289 */ tryGrow(Object[] array, int oldCap)290 private void tryGrow(Object[] array, int oldCap) { 291 lock.unlock(); // must release and then re-acquire main lock 292 Object[] newArray = null; 293 if (allocationSpinLock == 0 && 294 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) { 295 try { 296 int growth = (oldCap < 64) 297 ? (oldCap + 2) // grow faster if small 298 : (oldCap >> 1); 299 int newCap = ArraysSupport.newLength(oldCap, 1, growth); 300 if (queue == array) 301 newArray = new Object[newCap]; 302 } finally { 303 allocationSpinLock = 0; 304 } 305 } 306 if (newArray == null) // back off if another thread is allocating 307 Thread.yield(); 308 lock.lock(); 309 if (newArray != null && queue == array) { 310 queue = newArray; 311 System.arraycopy(array, 0, newArray, 0, oldCap); 312 } 313 } 314 315 /** 316 * Mechanics for poll(). Call only while holding lock. 317 */ dequeue()318 private E dequeue() { 319 // assert lock.isHeldByCurrentThread(); 320 final Object[] es; 321 final E result; 322 323 if ((result = (E) ((es = queue)[0])) != null) { 324 final int n; 325 final E x = (E) es[(n = --size)]; 326 es[n] = null; 327 if (n > 0) { 328 final Comparator<? super E> cmp; 329 if ((cmp = comparator) == null) 330 siftDownComparable(0, x, es, n); 331 else 332 siftDownUsingComparator(0, x, es, n, cmp); 333 } 334 } 335 return result; 336 } 337 338 /** 339 * Inserts item x at position k, maintaining heap invariant by 340 * promoting x up the tree until it is greater than or equal to 341 * its parent, or is the root. 342 * 343 * To simplify and speed up coercions and comparisons, the 344 * Comparable and Comparator versions are separated into different 345 * methods that are otherwise identical. (Similarly for siftDown.) 346 * 347 * @param k the position to fill 348 * @param x the item to insert 349 * @param es the heap array 350 */ siftUpComparable(int k, T x, Object[] es)351 private static <T> void siftUpComparable(int k, T x, Object[] es) { 352 Comparable<? super T> key = (Comparable<? super T>) x; 353 while (k > 0) { 354 int parent = (k - 1) >>> 1; 355 Object e = es[parent]; 356 if (key.compareTo((T) e) >= 0) 357 break; 358 es[k] = e; 359 k = parent; 360 } 361 es[k] = key; 362 } 363 siftUpUsingComparator( int k, T x, Object[] es, Comparator<? super T> cmp)364 private static <T> void siftUpUsingComparator( 365 int k, T x, Object[] es, Comparator<? super T> cmp) { 366 while (k > 0) { 367 int parent = (k - 1) >>> 1; 368 Object e = es[parent]; 369 if (cmp.compare(x, (T) e) >= 0) 370 break; 371 es[k] = e; 372 k = parent; 373 } 374 es[k] = x; 375 } 376 377 /** 378 * Inserts item x at position k, maintaining heap invariant by 379 * demoting x down the tree repeatedly until it is less than or 380 * equal to its children or is a leaf. 381 * 382 * @param k the position to fill 383 * @param x the item to insert 384 * @param es the heap array 385 * @param n heap size 386 */ siftDownComparable(int k, T x, Object[] es, int n)387 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) { 388 // assert n > 0; 389 Comparable<? super T> key = (Comparable<? super T>)x; 390 int half = n >>> 1; // loop while a non-leaf 391 while (k < half) { 392 int child = (k << 1) + 1; // assume left child is least 393 Object c = es[child]; 394 int right = child + 1; 395 if (right < n && 396 ((Comparable<? super T>) c).compareTo((T) es[right]) > 0) 397 c = es[child = right]; 398 if (key.compareTo((T) c) <= 0) 399 break; 400 es[k] = c; 401 k = child; 402 } 403 es[k] = key; 404 } 405 siftDownUsingComparator( int k, T x, Object[] es, int n, Comparator<? super T> cmp)406 private static <T> void siftDownUsingComparator( 407 int k, T x, Object[] es, int n, Comparator<? super T> cmp) { 408 // assert n > 0; 409 int half = n >>> 1; 410 while (k < half) { 411 int child = (k << 1) + 1; 412 Object c = es[child]; 413 int right = child + 1; 414 if (right < n && cmp.compare((T) c, (T) es[right]) > 0) 415 c = es[child = right]; 416 if (cmp.compare(x, (T) c) <= 0) 417 break; 418 es[k] = c; 419 k = child; 420 } 421 es[k] = x; 422 } 423 424 /** 425 * Establishes the heap invariant (described above) in the entire tree, 426 * assuming nothing about the order of the elements prior to the call. 427 * This classic algorithm due to Floyd (1964) is known to be O(size). 428 */ heapify()429 private void heapify() { 430 final Object[] es = queue; 431 int n = size, i = (n >>> 1) - 1; 432 final Comparator<? super E> cmp; 433 if ((cmp = comparator) == null) 434 for (; i >= 0; i--) 435 siftDownComparable(i, (E) es[i], es, n); 436 else 437 for (; i >= 0; i--) 438 siftDownUsingComparator(i, (E) es[i], es, n, cmp); 439 } 440 441 /** 442 * Inserts the specified element into this priority queue. 443 * 444 * @param e the element to add 445 * @return {@code true} (as specified by {@link Collection#add}) 446 * @throws ClassCastException if the specified element cannot be compared 447 * with elements currently in the priority queue according to the 448 * priority queue's ordering 449 * @throws NullPointerException if the specified element is null 450 */ add(E e)451 public boolean add(E e) { 452 return offer(e); 453 } 454 455 /** 456 * Inserts the specified element into this priority queue. 457 * As the queue is unbounded, this method will never return {@code false}. 458 * 459 * @param e the element to add 460 * @return {@code true} (as specified by {@link Queue#offer}) 461 * @throws ClassCastException if the specified element cannot be compared 462 * with elements currently in the priority queue according to the 463 * priority queue's ordering 464 * @throws NullPointerException if the specified element is null 465 */ offer(E e)466 public boolean offer(E e) { 467 if (e == null) 468 throw new NullPointerException(); 469 final ReentrantLock lock = this.lock; 470 lock.lock(); 471 int n, cap; 472 Object[] es; 473 while ((n = size) >= (cap = (es = queue).length)) 474 tryGrow(es, cap); 475 try { 476 final Comparator<? super E> cmp; 477 if ((cmp = comparator) == null) 478 siftUpComparable(n, e, es); 479 else 480 siftUpUsingComparator(n, e, es, cmp); 481 size = n + 1; 482 notEmpty.signal(); 483 } finally { 484 lock.unlock(); 485 } 486 return true; 487 } 488 489 /** 490 * Inserts the specified element into this priority queue. 491 * As the queue is unbounded, this method will never block. 492 * 493 * @param e the element to add 494 * @throws ClassCastException if the specified element cannot be compared 495 * with elements currently in the priority queue according to the 496 * priority queue's ordering 497 * @throws NullPointerException if the specified element is null 498 */ put(E e)499 public void put(E e) { 500 offer(e); // never need to block 501 } 502 503 /** 504 * Inserts the specified element into this priority queue. 505 * As the queue is unbounded, this method will never block or 506 * return {@code false}. 507 * 508 * @param e the element to add 509 * @param timeout This parameter is ignored as the method never blocks 510 * @param unit This parameter is ignored as the method never blocks 511 * @return {@code true} (as specified by 512 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer}) 513 * @throws ClassCastException if the specified element cannot be compared 514 * with elements currently in the priority queue according to the 515 * priority queue's ordering 516 * @throws NullPointerException if the specified element is null 517 */ offer(E e, long timeout, TimeUnit unit)518 public boolean offer(E e, long timeout, TimeUnit unit) { 519 return offer(e); // never need to block 520 } 521 poll()522 public E poll() { 523 final ReentrantLock lock = this.lock; 524 lock.lock(); 525 try { 526 return dequeue(); 527 } finally { 528 lock.unlock(); 529 } 530 } 531 take()532 public E take() throws InterruptedException { 533 final ReentrantLock lock = this.lock; 534 lock.lockInterruptibly(); 535 E result; 536 try { 537 while ( (result = dequeue()) == null) 538 notEmpty.await(); 539 } finally { 540 lock.unlock(); 541 } 542 return result; 543 } 544 poll(long timeout, TimeUnit unit)545 public E poll(long timeout, TimeUnit unit) throws InterruptedException { 546 long nanos = unit.toNanos(timeout); 547 final ReentrantLock lock = this.lock; 548 lock.lockInterruptibly(); 549 E result; 550 try { 551 while ( (result = dequeue()) == null && nanos > 0) 552 nanos = notEmpty.awaitNanos(nanos); 553 } finally { 554 lock.unlock(); 555 } 556 return result; 557 } 558 peek()559 public E peek() { 560 final ReentrantLock lock = this.lock; 561 lock.lock(); 562 try { 563 return (E) queue[0]; 564 } finally { 565 lock.unlock(); 566 } 567 } 568 569 /** 570 * Returns the comparator used to order the elements in this queue, 571 * or {@code null} if this queue uses the {@linkplain Comparable 572 * natural ordering} of its elements. 573 * 574 * @return the comparator used to order the elements in this queue, 575 * or {@code null} if this queue uses the natural 576 * ordering of its elements 577 */ comparator()578 public Comparator<? super E> comparator() { 579 return comparator; 580 } 581 size()582 public int size() { 583 final ReentrantLock lock = this.lock; 584 lock.lock(); 585 try { 586 return size; 587 } finally { 588 lock.unlock(); 589 } 590 } 591 592 /** 593 * Always returns {@code Integer.MAX_VALUE} because 594 * a {@code PriorityBlockingQueue} is not capacity constrained. 595 * @return {@code Integer.MAX_VALUE} always 596 */ remainingCapacity()597 public int remainingCapacity() { 598 return Integer.MAX_VALUE; 599 } 600 indexOf(Object o)601 private int indexOf(Object o) { 602 if (o != null) { 603 final Object[] es = queue; 604 for (int i = 0, n = size; i < n; i++) 605 if (o.equals(es[i])) 606 return i; 607 } 608 return -1; 609 } 610 611 /** 612 * Removes the ith element from queue. 613 */ removeAt(int i)614 private void removeAt(int i) { 615 final Object[] es = queue; 616 final int n = size - 1; 617 if (n == i) // removed last element 618 es[i] = null; 619 else { 620 E moved = (E) es[n]; 621 es[n] = null; 622 final Comparator<? super E> cmp; 623 if ((cmp = comparator) == null) 624 siftDownComparable(i, moved, es, n); 625 else 626 siftDownUsingComparator(i, moved, es, n, cmp); 627 if (es[i] == moved) { 628 if (cmp == null) 629 siftUpComparable(i, moved, es); 630 else 631 siftUpUsingComparator(i, moved, es, cmp); 632 } 633 } 634 size = n; 635 } 636 637 /** 638 * Removes a single instance of the specified element from this queue, 639 * if it is present. More formally, removes an element {@code e} such 640 * that {@code o.equals(e)}, if this queue contains one or more such 641 * elements. Returns {@code true} if and only if this queue contained 642 * the specified element (or equivalently, if this queue changed as a 643 * result of the call). 644 * 645 * @param o element to be removed from this queue, if present 646 * @return {@code true} if this queue changed as a result of the call 647 */ remove(Object o)648 public boolean remove(Object o) { 649 final ReentrantLock lock = this.lock; 650 lock.lock(); 651 try { 652 int i = indexOf(o); 653 if (i == -1) 654 return false; 655 removeAt(i); 656 return true; 657 } finally { 658 lock.unlock(); 659 } 660 } 661 662 /** 663 * Identity-based version for use in Itr.remove. 664 * 665 * @param o element to be removed from this queue, if present 666 */ removeEq(Object o)667 void removeEq(Object o) { 668 final ReentrantLock lock = this.lock; 669 lock.lock(); 670 try { 671 final Object[] es = queue; 672 for (int i = 0, n = size; i < n; i++) { 673 if (o == es[i]) { 674 removeAt(i); 675 break; 676 } 677 } 678 } finally { 679 lock.unlock(); 680 } 681 } 682 683 /** 684 * Returns {@code true} if this queue contains the specified element. 685 * More formally, returns {@code true} if and only if this queue contains 686 * at least one element {@code e} such that {@code o.equals(e)}. 687 * 688 * @param o object to be checked for containment in this queue 689 * @return {@code true} if this queue contains the specified element 690 */ contains(Object o)691 public boolean contains(Object o) { 692 final ReentrantLock lock = this.lock; 693 lock.lock(); 694 try { 695 return indexOf(o) != -1; 696 } finally { 697 lock.unlock(); 698 } 699 } 700 toString()701 public String toString() { 702 return Helpers.collectionToString(this); 703 } 704 705 /** 706 * @throws UnsupportedOperationException {@inheritDoc} 707 * @throws ClassCastException {@inheritDoc} 708 * @throws NullPointerException {@inheritDoc} 709 * @throws IllegalArgumentException {@inheritDoc} 710 */ drainTo(Collection<? super E> c)711 public int drainTo(Collection<? super E> c) { 712 return drainTo(c, Integer.MAX_VALUE); 713 } 714 715 /** 716 * @throws UnsupportedOperationException {@inheritDoc} 717 * @throws ClassCastException {@inheritDoc} 718 * @throws NullPointerException {@inheritDoc} 719 * @throws IllegalArgumentException {@inheritDoc} 720 */ drainTo(Collection<? super E> c, int maxElements)721 public int drainTo(Collection<? super E> c, int maxElements) { 722 Objects.requireNonNull(c); 723 if (c == this) 724 throw new IllegalArgumentException(); 725 if (maxElements <= 0) 726 return 0; 727 final ReentrantLock lock = this.lock; 728 lock.lock(); 729 try { 730 int n = Math.min(size, maxElements); 731 for (int i = 0; i < n; i++) { 732 c.add((E) queue[0]); // In this order, in case add() throws. 733 dequeue(); 734 } 735 return n; 736 } finally { 737 lock.unlock(); 738 } 739 } 740 741 /** 742 * Atomically removes all of the elements from this queue. 743 * The queue will be empty after this call returns. 744 */ clear()745 public void clear() { 746 final ReentrantLock lock = this.lock; 747 lock.lock(); 748 try { 749 final Object[] es = queue; 750 for (int i = 0, n = size; i < n; i++) 751 es[i] = null; 752 size = 0; 753 } finally { 754 lock.unlock(); 755 } 756 } 757 758 /** 759 * Returns an array containing all of the elements in this queue. 760 * The returned array elements are in no particular order. 761 * 762 * <p>The returned array will be "safe" in that no references to it are 763 * maintained by this queue. (In other words, this method must allocate 764 * a new array). The caller is thus free to modify the returned array. 765 * 766 * <p>This method acts as bridge between array-based and collection-based 767 * APIs. 768 * 769 * @return an array containing all of the elements in this queue 770 */ toArray()771 public Object[] toArray() { 772 final ReentrantLock lock = this.lock; 773 lock.lock(); 774 try { 775 return Arrays.copyOf(queue, size); 776 } finally { 777 lock.unlock(); 778 } 779 } 780 781 /** 782 * Returns an array containing all of the elements in this queue; the 783 * runtime type of the returned array is that of the specified array. 784 * The returned array elements are in no particular order. 785 * If the queue fits in the specified array, it is returned therein. 786 * Otherwise, a new array is allocated with the runtime type of the 787 * specified array and the size of this queue. 788 * 789 * <p>If this queue fits in the specified array with room to spare 790 * (i.e., the array has more elements than this queue), the element in 791 * the array immediately following the end of the queue is set to 792 * {@code null}. 793 * 794 * <p>Like the {@link #toArray()} method, this method acts as bridge between 795 * array-based and collection-based APIs. Further, this method allows 796 * precise control over the runtime type of the output array, and may, 797 * under certain circumstances, be used to save allocation costs. 798 * 799 * <p>Suppose {@code x} is a queue known to contain only strings. 800 * The following code can be used to dump the queue into a newly 801 * allocated array of {@code String}: 802 * 803 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre> 804 * 805 * Note that {@code toArray(new Object[0])} is identical in function to 806 * {@code toArray()}. 807 * 808 * @param a the array into which the elements of the queue are to 809 * be stored, if it is big enough; otherwise, a new array of the 810 * same runtime type is allocated for this purpose 811 * @return an array containing all of the elements in this queue 812 * @throws ArrayStoreException if the runtime type of the specified array 813 * is not a supertype of the runtime type of every element in 814 * this queue 815 * @throws NullPointerException if the specified array is null 816 */ toArray(T[] a)817 public <T> T[] toArray(T[] a) { 818 final ReentrantLock lock = this.lock; 819 lock.lock(); 820 try { 821 int n = size; 822 if (a.length < n) 823 // Make a new array of a's runtime type, but my contents: 824 return (T[]) Arrays.copyOf(queue, size, a.getClass()); 825 System.arraycopy(queue, 0, a, 0, n); 826 if (a.length > n) 827 a[n] = null; 828 return a; 829 } finally { 830 lock.unlock(); 831 } 832 } 833 834 /** 835 * Returns an iterator over the elements in this queue. The 836 * iterator does not return the elements in any particular order. 837 * 838 * <p>The returned iterator is 839 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 840 * 841 * @return an iterator over the elements in this queue 842 */ iterator()843 public Iterator<E> iterator() { 844 return new Itr(toArray()); 845 } 846 847 /** 848 * Snapshot iterator that works off copy of underlying q array. 849 */ 850 final class Itr implements Iterator<E> { 851 final Object[] array; // Array of all elements 852 int cursor; // index of next element to return 853 int lastRet = -1; // index of last element, or -1 if no such 854 Itr(Object[] array)855 Itr(Object[] array) { 856 this.array = array; 857 } 858 hasNext()859 public boolean hasNext() { 860 return cursor < array.length; 861 } 862 next()863 public E next() { 864 if (cursor >= array.length) 865 throw new NoSuchElementException(); 866 return (E)array[lastRet = cursor++]; 867 } 868 remove()869 public void remove() { 870 if (lastRet < 0) 871 throw new IllegalStateException(); 872 removeEq(array[lastRet]); 873 lastRet = -1; 874 } 875 forEachRemaining(Consumer<? super E> action)876 public void forEachRemaining(Consumer<? super E> action) { 877 Objects.requireNonNull(action); 878 final Object[] es = array; 879 int i; 880 if ((i = cursor) < es.length) { 881 lastRet = -1; 882 cursor = es.length; 883 for (; i < es.length; i++) 884 action.accept((E) es[i]); 885 lastRet = es.length - 1; 886 } 887 } 888 } 889 890 /** 891 * Saves this queue to a stream (that is, serializes it). 892 * 893 * For compatibility with previous version of this class, elements 894 * are first copied to a java.util.PriorityQueue, which is then 895 * serialized. 896 * 897 * @param s the stream 898 * @throws java.io.IOException if an I/O error occurs 899 */ writeObject(java.io.ObjectOutputStream s)900 private void writeObject(java.io.ObjectOutputStream s) 901 throws java.io.IOException { 902 lock.lock(); 903 try { 904 // avoid zero capacity argument 905 q = new PriorityQueue<E>(Math.max(size, 1), comparator); 906 q.addAll(this); 907 s.defaultWriteObject(); 908 } finally { 909 q = null; 910 lock.unlock(); 911 } 912 } 913 914 /** 915 * Reconstitutes this queue from a stream (that is, deserializes it). 916 * @param s the stream 917 * @throws ClassNotFoundException if the class of a serialized object 918 * could not be found 919 * @throws java.io.IOException if an I/O error occurs 920 */ readObject(java.io.ObjectInputStream s)921 private void readObject(java.io.ObjectInputStream s) 922 throws java.io.IOException, ClassNotFoundException { 923 try { 924 s.defaultReadObject(); 925 int sz = q.size(); 926 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, sz); 927 this.queue = new Object[Math.max(1, sz)]; 928 comparator = q.comparator(); 929 addAll(q); 930 } finally { 931 q = null; 932 } 933 } 934 935 /** 936 * Immutable snapshot spliterator that binds to elements "late". 937 */ 938 final class PBQSpliterator implements Spliterator<E> { 939 Object[] array; // null until late-bound-initialized 940 int index; 941 int fence; 942 PBQSpliterator()943 PBQSpliterator() {} 944 PBQSpliterator(Object[] array, int index, int fence)945 PBQSpliterator(Object[] array, int index, int fence) { 946 this.array = array; 947 this.index = index; 948 this.fence = fence; 949 } 950 getFence()951 private int getFence() { 952 if (array == null) 953 fence = (array = toArray()).length; 954 return fence; 955 } 956 trySplit()957 public PBQSpliterator trySplit() { 958 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 959 return (lo >= mid) ? null : 960 new PBQSpliterator(array, lo, index = mid); 961 } 962 forEachRemaining(Consumer<? super E> action)963 public void forEachRemaining(Consumer<? super E> action) { 964 Objects.requireNonNull(action); 965 final int hi = getFence(), lo = index; 966 final Object[] es = array; 967 index = hi; // ensure exhaustion 968 for (int i = lo; i < hi; i++) 969 action.accept((E) es[i]); 970 } 971 tryAdvance(Consumer<? super E> action)972 public boolean tryAdvance(Consumer<? super E> action) { 973 Objects.requireNonNull(action); 974 if (getFence() > index && index >= 0) { 975 action.accept((E) array[index++]); 976 return true; 977 } 978 return false; 979 } 980 estimateSize()981 public long estimateSize() { return getFence() - index; } 982 characteristics()983 public int characteristics() { 984 return (Spliterator.NONNULL | 985 Spliterator.SIZED | 986 Spliterator.SUBSIZED); 987 } 988 } 989 990 /** 991 * Returns a {@link Spliterator} over the elements in this queue. 992 * The spliterator does not traverse elements in any particular order 993 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported). 994 * 995 * <p>The returned spliterator is 996 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 997 * 998 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and 999 * {@link Spliterator#NONNULL}. 1000 * 1001 * @implNote 1002 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}. 1003 * 1004 * @return a {@code Spliterator} over the elements in this queue 1005 * @since 1.8 1006 */ spliterator()1007 public Spliterator<E> spliterator() { 1008 return new PBQSpliterator(); 1009 } 1010 1011 /** 1012 * @throws NullPointerException {@inheritDoc} 1013 */ removeIf(Predicate<? super E> filter)1014 public boolean removeIf(Predicate<? super E> filter) { 1015 Objects.requireNonNull(filter); 1016 return bulkRemove(filter); 1017 } 1018 1019 /** 1020 * @throws NullPointerException {@inheritDoc} 1021 */ removeAll(Collection<?> c)1022 public boolean removeAll(Collection<?> c) { 1023 Objects.requireNonNull(c); 1024 return bulkRemove(e -> c.contains(e)); 1025 } 1026 1027 /** 1028 * @throws NullPointerException {@inheritDoc} 1029 */ retainAll(Collection<?> c)1030 public boolean retainAll(Collection<?> c) { 1031 Objects.requireNonNull(c); 1032 return bulkRemove(e -> !c.contains(e)); 1033 } 1034 1035 // A tiny bit set implementation 1036 nBits(int n)1037 private static long[] nBits(int n) { 1038 return new long[((n - 1) >> 6) + 1]; 1039 } setBit(long[] bits, int i)1040 private static void setBit(long[] bits, int i) { 1041 bits[i >> 6] |= 1L << i; 1042 } isClear(long[] bits, int i)1043 private static boolean isClear(long[] bits, int i) { 1044 return (bits[i >> 6] & (1L << i)) == 0; 1045 } 1046 1047 /** Implementation of bulk remove methods. */ bulkRemove(Predicate<? super E> filter)1048 private boolean bulkRemove(Predicate<? super E> filter) { 1049 final ReentrantLock lock = this.lock; 1050 lock.lock(); 1051 try { 1052 final Object[] es = queue; 1053 final int end = size; 1054 int i; 1055 // Optimize for initial run of survivors 1056 for (i = 0; i < end && !filter.test((E) es[i]); i++) 1057 ; 1058 if (i >= end) 1059 return false; 1060 // Tolerate predicates that reentrantly access the 1061 // collection for read, so traverse once to find elements 1062 // to delete, a second pass to physically expunge. 1063 final int beg = i; 1064 final long[] deathRow = nBits(end - beg); 1065 deathRow[0] = 1L; // set bit 0 1066 for (i = beg + 1; i < end; i++) 1067 if (filter.test((E) es[i])) 1068 setBit(deathRow, i - beg); 1069 int w = beg; 1070 for (i = beg; i < end; i++) 1071 if (isClear(deathRow, i - beg)) 1072 es[w++] = es[i]; 1073 for (i = size = w; i < end; i++) 1074 es[i] = null; 1075 heapify(); 1076 return true; 1077 } finally { 1078 lock.unlock(); 1079 } 1080 } 1081 1082 /** 1083 * @throws NullPointerException {@inheritDoc} 1084 */ forEach(Consumer<? super E> action)1085 public void forEach(Consumer<? super E> action) { 1086 Objects.requireNonNull(action); 1087 final ReentrantLock lock = this.lock; 1088 lock.lock(); 1089 try { 1090 final Object[] es = queue; 1091 for (int i = 0, n = size; i < n; i++) 1092 action.accept((E) es[i]); 1093 } finally { 1094 lock.unlock(); 1095 } 1096 } 1097 1098 // VarHandle mechanics 1099 private static final VarHandle ALLOCATIONSPINLOCK; 1100 static { 1101 try { 1102 MethodHandles.Lookup l = MethodHandles.lookup(); 1103 ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class, 1104 "allocationSpinLock", 1105 int.class); 1106 } catch (ReflectiveOperationException e) { 1107 throw new ExceptionInInitializerError(e); 1108 } 1109 } 1110 } 1111