1 /*
2  * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package javax.crypto.spec;
27 
28 import java.math.BigInteger;
29 import java.security.spec.AlgorithmParameterSpec;
30 
31 /**
32  * This class specifies the set of parameters used with the Diffie-Hellman
33  * algorithm, as specified in PKCS #3: <i>Diffie-Hellman Key-Agreement
34  * Standard</i>.
35  *
36  * <p>A central authority generates parameters and gives them to the two
37  * entities seeking to generate a secret key. The parameters are a prime
38  * <code>p</code>, a base <code>g</code>, and optionally the length
39  * in bits of the private value, <code>l</code>.
40  *
41  * <p>It is possible that more than one instance of parameters may be
42  * generated by a given central authority, and that there may be more than
43  * one central authority. Indeed, each individual may be its own central
44  * authority, with different entities having different parameters.
45  *
46  * <p>Note that this class does not perform any validation on specified
47  * parameters. Thus, the specified values are returned directly even
48  * if they are null.
49  *
50  * @author Jan Luehe
51  *
52  * @see javax.crypto.KeyAgreement
53  * @since 1.4
54  */
55 public class DHParameterSpec implements AlgorithmParameterSpec {
56 
57     // The prime modulus
58     private BigInteger p;
59 
60     // The base generator
61     private BigInteger g;
62 
63     // The size in bits of the random exponent (private value) (optional)
64     private int l;
65 
66     /**
67      * Constructs a parameter set for Diffie-Hellman, using a prime modulus
68      * <code>p</code> and a base generator <code>g</code>.
69      *
70      * @param p the prime modulus
71      * @param g the base generator
72      */
DHParameterSpec(BigInteger p, BigInteger g)73     public DHParameterSpec(BigInteger p, BigInteger g) {
74         this.p = p;
75         this.g = g;
76         this.l = 0;
77     }
78 
79     /**
80      * Constructs a parameter set for Diffie-Hellman, using a prime modulus
81      * <code>p</code>, a base generator <code>g</code>,
82      * and the size in bits, <code>l</code>, of the random exponent
83      * (private value).
84      *
85      * @param p the prime modulus
86      * @param g the base generator
87      * @param l the size in bits of the random exponent (private value)
88      */
DHParameterSpec(BigInteger p, BigInteger g, int l)89     public DHParameterSpec(BigInteger p, BigInteger g, int l) {
90         this.p = p;
91         this.g = g;
92         this.l = l;
93     }
94 
95     /**
96      * Returns the prime modulus <code>p</code>.
97      *
98      * @return the prime modulus <code>p</code>
99      */
getP()100     public BigInteger getP() {
101         return this.p;
102     }
103 
104     /**
105      * Returns the base generator <code>g</code>.
106      *
107      * @return the base generator <code>g</code>
108      */
getG()109     public BigInteger getG() {
110         return this.g;
111     }
112 
113     /**
114      * Returns the size in bits, <code>l</code>, of the random exponent
115      * (private value).
116      *
117      * @return the size in bits, <code>l</code>, of the random exponent
118      * (private value), or 0 if this size has not been set
119      */
getL()120     public int getL() {
121         return this.l;
122     }
123 }
124