1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 
18 // SOME COMMENTS ABOUT USAGE:
19 
20 // This provides primarily wp<> weak pointer types and RefBase, which work
21 // together with sp<> from <StrongPointer.h>.
22 
23 // sp<> (and wp<>) are a type of smart pointer that use a well defined protocol
24 // to operate. As long as the object they are templated with implements that
25 // protocol, these smart pointers work. In several places the platform
26 // instantiates sp<> with non-RefBase objects; the two are not tied to each
27 // other.
28 
29 // RefBase is such an implementation and it supports strong pointers, weak
30 // pointers and some magic features for the binder.
31 
32 // So, when using RefBase objects, you have the ability to use strong and weak
33 // pointers through sp<> and wp<>.
34 
35 // Normally, when the last strong pointer goes away, the object is destroyed,
36 // i.e. it's destructor is called. HOWEVER, parts of its associated memory is not
37 // freed until the last weak pointer is released.
38 
39 // Weak pointers are essentially "safe" pointers. They are always safe to
40 // access through promote(). They may return nullptr if the object was
41 // destroyed because it ran out of strong pointers. This makes them good candidates
42 // for keys in a cache for instance.
43 
44 // Weak pointers remain valid for comparison purposes even after the underlying
45 // object has been destroyed. Even if object A is destroyed and its memory reused
46 // for B, A remaining weak pointer to A will not compare equal to one to B.
47 // This again makes them attractive for use as keys.
48 
49 // How is this supposed / intended to be used?
50 
51 // Our recommendation is to use strong references (sp<>) when there is an
52 // ownership relation. e.g. when an object "owns" another one, use a strong
53 // ref. And of course use strong refs as arguments of functions (it's extremely
54 // rare that a function will take a wp<>).
55 
56 // Typically a newly allocated object will immediately be used to initialize
57 // a strong pointer, which may then be used to construct or assign to other
58 // strong and weak pointers.
59 
60 // Use weak references when there are no ownership relation. e.g. the keys in a
61 // cache (you cannot use plain pointers because there is no safe way to acquire
62 // a strong reference from a vanilla pointer).
63 
64 // This implies that two objects should never (or very rarely) have sp<> on
65 // each other, because they can't both own each other.
66 
67 
68 // Caveats with reference counting
69 
70 // Obviously, circular strong references are a big problem; this creates leaks
71 // and it's hard to debug -- except it's in fact really easy because RefBase has
72 // tons of debugging code for that. It can basically tell you exactly where the
73 // leak is.
74 
75 // Another problem has to do with destructors with side effects. You must
76 // assume that the destructor of reference counted objects can be called AT ANY
77 // TIME. For instance code as simple as this:
78 
79 // void setStuff(const sp<Stuff>& stuff) {
80 //   std::lock_guard<std::mutex> lock(mMutex);
81 //   mStuff = stuff;
82 // }
83 
84 // is very dangerous. This code WILL deadlock one day or another.
85 
86 // What isn't obvious is that ~Stuff() can be called as a result of the
87 // assignment. And it gets called with the lock held. First of all, the lock is
88 // protecting mStuff, not ~Stuff(). Secondly, if ~Stuff() uses its own internal
89 // mutex, now you have mutex ordering issues.  Even worse, if ~Stuff() is
90 // virtual, now you're calling into "user" code (potentially), by that, I mean,
91 // code you didn't even write.
92 
93 // A correct way to write this code is something like:
94 
95 // void setStuff(const sp<Stuff>& stuff) {
96 //   std::unique_lock<std::mutex> lock(mMutex);
97 //   sp<Stuff> hold = mStuff;
98 //   mStuff = stuff;
99 //   lock.unlock();
100 // }
101 
102 // More importantly, reference counted objects should do as little work as
103 // possible in their destructor, or at least be mindful that their destructor
104 // could be called from very weird and unintended places.
105 
106 // Other more specific restrictions for wp<> and sp<>:
107 
108 // Do not construct a strong pointer to "this" in an object's constructor.
109 // The onFirstRef() callback would be made on an incompletely constructed
110 // object.
111 // Construction of a weak pointer to "this" in an object's constructor is also
112 // discouraged. But the implementation was recently changed so that, in the
113 // absence of extendObjectLifetime() calls, weak pointers no longer impact
114 // object lifetime, and hence this no longer risks premature deallocation,
115 // and hence usually works correctly.
116 
117 // Such strong or weak pointers can be safely created in the RefBase onFirstRef()
118 // callback.
119 
120 // Use of wp::unsafe_get() for any purpose other than debugging is almost
121 // always wrong.  Unless you somehow know that there is a longer-lived sp<> to
122 // the same object, it may well return a pointer to a deallocated object that
123 // has since been reallocated for a different purpose. (And if you know there
124 // is a longer-lived sp<>, why not use an sp<> directly?) A wp<> should only be
125 // dereferenced by using promote().
126 
127 // Any object inheriting from RefBase should always be destroyed as the result
128 // of a reference count decrement, not via any other means.  Such objects
129 // should never be stack allocated, or appear directly as data members in other
130 // objects. Objects inheriting from RefBase should have their strong reference
131 // count incremented as soon as possible after construction. Usually this
132 // will be done via construction of an sp<> to the object, but may instead
133 // involve other means of calling RefBase::incStrong().
134 // Explicitly deleting or otherwise destroying a RefBase object with outstanding
135 // wp<> or sp<> pointers to it will result in an abort or heap corruption.
136 
137 // It is particularly important not to mix sp<> and direct storage management
138 // since the sp from raw pointer constructor is implicit. Thus if a RefBase-
139 // -derived object of type T is managed without ever incrementing its strong
140 // count, and accidentally passed to f(sp<T>), a strong pointer to the object
141 // will be temporarily constructed and destroyed, prematurely deallocating the
142 // object, and resulting in heap corruption. None of this would be easily
143 // visible in the source. See below on
144 // ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION for a compile time
145 // option which helps avoid this case.
146 
147 // Extra Features:
148 
149 // RefBase::extendObjectLifetime() can be used to prevent destruction of the
150 // object while there are still weak references. This is really special purpose
151 // functionality to support Binder.
152 
153 // Wp::promote(), implemented via the attemptIncStrong() member function, is
154 // used to try to convert a weak pointer back to a strong pointer.  It's the
155 // normal way to try to access the fields of an object referenced only through
156 // a wp<>.  Binder code also sometimes uses attemptIncStrong() directly.
157 
158 // RefBase provides a number of additional callbacks for certain reference count
159 // events, as well as some debugging facilities.
160 
161 // Debugging support can be enabled by turning on DEBUG_REFS in RefBase.cpp.
162 // Otherwise little checking is provided.
163 
164 // Thread safety:
165 
166 // Like std::shared_ptr, sp<> and wp<> allow concurrent accesses to DIFFERENT
167 // sp<> and wp<> instances that happen to refer to the same underlying object.
168 // They do NOT support concurrent access (where at least one access is a write)
169 // to THE SAME sp<> or wp<>.  In effect, their thread-safety properties are
170 // exactly like those of T*, NOT atomic<T*>.
171 
172 // Safety option: ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION
173 //
174 // This flag makes the semantics for using a RefBase object with wp<> and sp<>
175 // much stricter by disabling implicit conversion from raw pointers to these
176 // objects. In order to use this, apply this flag in Android.bp like so:
177 //
178 //    cflags: [
179 //        "-DANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION",
180 //    ],
181 //
182 // REGARDLESS of whether this flag is on, best usage of sp<> is shown below. If
183 // this flag is on, no other usage is possible (directly calling RefBase methods
184 // is possible, but seeing code using 'incStrong' instead of 'sp<>', for
185 // instance, should already set off big alarm bells. With carefully constructed
186 // data structures, it should NEVER be necessary to directly use RefBase
187 // methods). Proper RefBase usage:
188 //
189 //    class Foo : virtual public RefBase { ... };
190 //
191 //    // always construct an sp object with sp::make
192 //    sp<Foo> myFoo = sp<Foo>::make(/*args*/);
193 //
194 //    // if you need a weak pointer, it must be constructed from a strong
195 //    // pointer
196 //    wp<Foo> weakFoo = myFoo; // NOT myFoo.get()
197 //
198 //    // If you are inside of a method of Foo and need access to a strong
199 //    // explicitly call this function. This documents your intention to code
200 //    // readers, and it will give a runtime error for what otherwise would
201 //    // be potential double ownership
202 //    .... Foo::someMethod(...) {
203 //        // asserts if there is a memory issue
204 //        sp<Foo> thiz = sp<Foo>::fromExisting(this);
205 //    }
206 //
207 
208 #ifndef ANDROID_REF_BASE_H
209 #define ANDROID_REF_BASE_H
210 
211 #include <atomic>
212 #include <functional>
213 #include <memory>
214 #include <type_traits>  // for common_type.
215 
216 #include <stdint.h>
217 #include <sys/types.h>
218 #include <stdlib.h>
219 #include <string.h>
220 
221 // LightRefBase used to be declared in this header, so we have to include it
222 #include <utils/LightRefBase.h>
223 
224 #include <utils/StrongPointer.h>
225 #include <utils/TypeHelpers.h>
226 
227 // ---------------------------------------------------------------------------
228 namespace android {
229 
230 // ---------------------------------------------------------------------------
231 
232 #define COMPARE_WEAK(_op_)                                      \
233 template<typename U>                                            \
234 inline bool operator _op_ (const U* o) const {                  \
235     return m_ptr _op_ o;                                        \
236 }                                                               \
237 /* Needed to handle type inference for nullptr: */              \
238 inline bool operator _op_ (const T* o) const {                  \
239     return m_ptr _op_ o;                                        \
240 }
241 
242 template<template<typename C> class comparator, typename T, typename U>
_wp_compare_(T * a,U * b)243 static inline bool _wp_compare_(T* a, U* b) {
244     return comparator<typename std::common_type<T*, U*>::type>()(a, b);
245 }
246 
247 // Use std::less and friends to avoid undefined behavior when ordering pointers
248 // to different objects.
249 #define COMPARE_WEAK_FUNCTIONAL(_op_, _compare_)                 \
250 template<typename U>                                             \
251 inline bool operator _op_ (const U* o) const {                   \
252     return _wp_compare_<_compare_>(m_ptr, o);                    \
253 }
254 
255 // ---------------------------------------------------------------------------
256 
257 // RefererenceRenamer is pure abstract, there is no virtual method
258 // implementation to put in a translation unit in order to silence the
259 // weak vtables warning.
260 #if defined(__clang__)
261 #pragma clang diagnostic push
262 #pragma clang diagnostic ignored "-Wweak-vtables"
263 #endif
264 
265 class ReferenceRenamer {
266 protected:
267     // destructor is purposely not virtual so we avoid code overhead from
268     // subclasses; we have to make it protected to guarantee that it
269     // cannot be called from this base class (and to make strict compilers
270     // happy).
~ReferenceRenamer()271     ~ReferenceRenamer() { }
272 public:
273     virtual void operator()(size_t i) const = 0;
274 };
275 
276 #if defined(__clang__)
277 #pragma clang diagnostic pop
278 #endif
279 
280 // ---------------------------------------------------------------------------
281 
282 class RefBase
283 {
284 public:
285             void            incStrong(const void* id) const;
286             void            incStrongRequireStrong(const void* id) const;
287             void            decStrong(const void* id) const;
288 
289             void            forceIncStrong(const void* id) const;
290 
291             //! DEBUGGING ONLY: Get current strong ref count.
292             int32_t         getStrongCount() const;
293 
294     class weakref_type
295     {
296     public:
297         RefBase*            refBase() const;
298 
299         void                incWeak(const void* id);
300         void                incWeakRequireWeak(const void* id);
301         void                decWeak(const void* id);
302 
303         // acquires a strong reference if there is already one.
304         bool                attemptIncStrong(const void* id);
305 
306         // acquires a weak reference if there is already one.
307         // This is not always safe. see ProcessState.cpp and BpBinder.cpp
308         // for proper use.
309         bool                attemptIncWeak(const void* id);
310 
311         //! DEBUGGING ONLY: Get current weak ref count.
312         int32_t             getWeakCount() const;
313 
314         //! DEBUGGING ONLY: Print references held on object.
315         void                printRefs() const;
316 
317         //! DEBUGGING ONLY: Enable tracking for this object.
318         // enable -- enable/disable tracking
319         // retain -- when tracking is enable, if true, then we save a stack trace
320         //           for each reference and dereference; when retain == false, we
321         //           match up references and dereferences and keep only the
322         //           outstanding ones.
323 
324         void                trackMe(bool enable, bool retain);
325     };
326 
327             weakref_type*   createWeak(const void* id) const;
328 
329             weakref_type*   getWeakRefs() const;
330 
331             //! DEBUGGING ONLY: Print references held on object.
printRefs()332     inline  void            printRefs() const { getWeakRefs()->printRefs(); }
333 
334             //! DEBUGGING ONLY: Enable tracking of object.
trackMe(bool enable,bool retain)335     inline  void            trackMe(bool enable, bool retain)
336     {
337         getWeakRefs()->trackMe(enable, retain);
338     }
339 
340 protected:
341     // When constructing these objects, prefer using sp::make<>. Using a RefBase
342     // object on the stack or with other refcount mechanisms (e.g.
343     // std::shared_ptr) is inherently wrong. RefBase types have an implicit
344     // ownership model and cannot be safely used with other ownership models.
345 
346                             RefBase();
347     virtual                 ~RefBase();
348 
349     //! Flags for extendObjectLifetime()
350     enum {
351         OBJECT_LIFETIME_STRONG  = 0x0000,
352         OBJECT_LIFETIME_WEAK    = 0x0001,
353         OBJECT_LIFETIME_MASK    = 0x0001
354     };
355 
356             void            extendObjectLifetime(int32_t mode);
357 
358     //! Flags for onIncStrongAttempted()
359     enum {
360         FIRST_INC_STRONG = 0x0001
361     };
362 
363     // Invoked after creation of initial strong pointer/reference.
364     virtual void            onFirstRef();
365     // Invoked when either the last strong reference goes away, or we need to undo
366     // the effect of an unnecessary onIncStrongAttempted.
367     virtual void            onLastStrongRef(const void* id);
368     // Only called in OBJECT_LIFETIME_WEAK case.  Returns true if OK to promote to
369     // strong reference. May have side effects if it returns true.
370     // The first flags argument is always FIRST_INC_STRONG.
371     // TODO: Remove initial flag argument.
372     virtual bool            onIncStrongAttempted(uint32_t flags, const void* id);
373     // Invoked in the OBJECT_LIFETIME_WEAK case when the last reference of either
374     // kind goes away.  Unused.
375     // TODO: Remove.
376     virtual void            onLastWeakRef(const void* id);
377 
378 private:
379     friend class weakref_type;
380     class weakref_impl;
381 
382                             RefBase(const RefBase& o);
383             RefBase&        operator=(const RefBase& o);
384 
385 private:
386     friend class ReferenceMover;
387 
388     static void renameRefs(size_t n, const ReferenceRenamer& renamer);
389 
390     static void renameRefId(weakref_type* ref,
391             const void* old_id, const void* new_id);
392 
393     static void renameRefId(RefBase* ref,
394             const void* old_id, const void* new_id);
395 
396         weakref_impl* const mRefs;
397 };
398 
399 // ---------------------------------------------------------------------------
400 
401 template <typename T>
402 class wp
403 {
404 public:
405     typedef typename RefBase::weakref_type weakref_type;
406 
wp()407     inline constexpr wp() : m_ptr(nullptr), m_refs(nullptr) { }
408 
409     // if nullptr, returns nullptr
410     //
411     // if a weak pointer is already available, this will retrieve it,
412     // otherwise, this will abort
413     static inline wp<T> fromExisting(T* other);
414 
415     // for more information about this flag, see above
416 #if defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
wp(std::nullptr_t)417     wp(std::nullptr_t) : wp() {}
418 #else
419     wp(T* other);  // NOLINT(implicit)
420     template <typename U>
421     wp(U* other);  // NOLINT(implicit)
422     wp& operator=(T* other);
423     template <typename U>
424     wp& operator=(U* other);
425 #endif
426 
427     wp(const wp<T>& other);
428     explicit wp(const sp<T>& other);
429 
430     template<typename U> wp(const sp<U>& other);  // NOLINT(implicit)
431     template<typename U> wp(const wp<U>& other);  // NOLINT(implicit)
432 
433     ~wp();
434 
435     // Assignment
436 
437     wp& operator = (const wp<T>& other);
438     wp& operator = (const sp<T>& other);
439 
440     template<typename U> wp& operator = (const wp<U>& other);
441     template<typename U> wp& operator = (const sp<U>& other);
442 
443     void set_object_and_refs(T* other, weakref_type* refs);
444 
445     // promotion to sp
446 
447     sp<T> promote() const;
448 
449     // Reset
450 
451     void clear();
452 
453     // Accessors
454 
get_refs()455     inline  weakref_type* get_refs() const { return m_refs; }
456 
unsafe_get()457     inline  T* unsafe_get() const { return m_ptr; }
458 
459     // Operators
460 
461     COMPARE_WEAK(==)
462     COMPARE_WEAK(!=)
463     COMPARE_WEAK_FUNCTIONAL(>, std::greater)
464     COMPARE_WEAK_FUNCTIONAL(<, std::less)
465     COMPARE_WEAK_FUNCTIONAL(<=, std::less_equal)
466     COMPARE_WEAK_FUNCTIONAL(>=, std::greater_equal)
467 
468     template<typename U>
469     inline bool operator == (const wp<U>& o) const {
470         return m_refs == o.m_refs;  // Implies m_ptr == o.mptr; see invariants below.
471     }
472 
473     template<typename U>
474     inline bool operator == (const sp<U>& o) const {
475         // Just comparing m_ptr fields is often dangerous, since wp<> may refer to an older
476         // object at the same address.
477         if (o == nullptr) {
478           return m_ptr == nullptr;
479         } else {
480           return m_refs == o->getWeakRefs();  // Implies m_ptr == o.mptr.
481         }
482     }
483 
484     template<typename U>
485     inline bool operator != (const sp<U>& o) const {
486         return !(*this == o);
487     }
488 
489     template<typename U>
490     inline bool operator > (const wp<U>& o) const {
491         if (m_ptr == o.m_ptr) {
492             return _wp_compare_<std::greater>(m_refs, o.m_refs);
493         } else {
494             return _wp_compare_<std::greater>(m_ptr, o.m_ptr);
495         }
496     }
497 
498     template<typename U>
499     inline bool operator < (const wp<U>& o) const {
500         if (m_ptr == o.m_ptr) {
501             return _wp_compare_<std::less>(m_refs, o.m_refs);
502         } else {
503             return _wp_compare_<std::less>(m_ptr, o.m_ptr);
504         }
505     }
506     template<typename U> inline bool operator != (const wp<U>& o) const { return !operator == (o); }
507     template<typename U> inline bool operator <= (const wp<U>& o) const { return !operator > (o); }
508     template<typename U> inline bool operator >= (const wp<U>& o) const { return !operator < (o); }
509 
510 private:
511     template<typename Y> friend class sp;
512     template<typename Y> friend class wp;
513 
514     T*              m_ptr;
515     weakref_type*   m_refs;
516 };
517 
518 #undef COMPARE_WEAK
519 #undef COMPARE_WEAK_FUNCTIONAL
520 
521 // ---------------------------------------------------------------------------
522 // No user serviceable parts below here.
523 
524 // Implementation invariants:
525 // Either
526 // 1) m_ptr and m_refs are both null, or
527 // 2) m_refs == m_ptr->mRefs, or
528 // 3) *m_ptr is no longer live, and m_refs points to the weakref_type object that corresponded
529 //    to m_ptr while it was live. *m_refs remains live while a wp<> refers to it.
530 //
531 // The m_refs field in a RefBase object is allocated on construction, unique to that RefBase
532 // object, and never changes. Thus if two wp's have identical m_refs fields, they are either both
533 // null or point to the same object. If two wp's have identical m_ptr fields, they either both
534 // point to the same live object and thus have the same m_ref fields, or at least one of the
535 // objects is no longer live.
536 //
537 // Note that the above comparison operations go out of their way to provide an ordering consistent
538 // with ordinary pointer comparison; otherwise they could ignore m_ptr, and just compare m_refs.
539 
540 template <typename T>
fromExisting(T * other)541 wp<T> wp<T>::fromExisting(T* other) {
542     if (!other) return nullptr;
543 
544     auto refs = other->getWeakRefs();
545     refs->incWeakRequireWeak(other);
546 
547     wp<T> ret;
548     ret.m_ptr = other;
549     ret.m_refs = refs;
550     return ret;
551 }
552 
553 #if !defined(ANDROID_UTILS_REF_BASE_DISABLE_IMPLICIT_CONSTRUCTION)
554 template<typename T>
wp(T * other)555 wp<T>::wp(T* other)
556     : m_ptr(other)
557 {
558     m_refs = other ? other->createWeak(this) : nullptr;
559 }
560 
561 template <typename T>
562 template <typename U>
wp(U * other)563 wp<T>::wp(U* other) : m_ptr(other) {
564     m_refs = other ? other->createWeak(this) : nullptr;
565 }
566 
567 template <typename T>
568 wp<T>& wp<T>::operator=(T* other) {
569     weakref_type* newRefs = other ? other->createWeak(this) : nullptr;
570     if (m_ptr) m_refs->decWeak(this);
571     m_ptr = other;
572     m_refs = newRefs;
573     return *this;
574 }
575 
576 template <typename T>
577 template <typename U>
578 wp<T>& wp<T>::operator=(U* other) {
579     weakref_type* newRefs = other ? other->createWeak(this) : 0;
580     if (m_ptr) m_refs->decWeak(this);
581     m_ptr = other;
582     m_refs = newRefs;
583     return *this;
584 }
585 #endif
586 
587 template<typename T>
wp(const wp<T> & other)588 wp<T>::wp(const wp<T>& other)
589     : m_ptr(other.m_ptr), m_refs(other.m_refs)
590 {
591     if (m_ptr) m_refs->incWeak(this);
592 }
593 
594 template<typename T>
wp(const sp<T> & other)595 wp<T>::wp(const sp<T>& other)
596     : m_ptr(other.m_ptr)
597 {
598     m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
599 }
600 
601 template<typename T> template<typename U>
wp(const wp<U> & other)602 wp<T>::wp(const wp<U>& other)
603     : m_ptr(other.m_ptr)
604 {
605     if (m_ptr) {
606         m_refs = other.m_refs;
607         m_refs->incWeak(this);
608     } else {
609         m_refs = nullptr;
610     }
611 }
612 
613 template<typename T> template<typename U>
wp(const sp<U> & other)614 wp<T>::wp(const sp<U>& other)
615     : m_ptr(other.m_ptr)
616 {
617     m_refs = m_ptr ? m_ptr->createWeak(this) : nullptr;
618 }
619 
620 template<typename T>
~wp()621 wp<T>::~wp()
622 {
623     if (m_ptr) m_refs->decWeak(this);
624 }
625 
626 template<typename T>
627 wp<T>& wp<T>::operator = (const wp<T>& other)
628 {
629     weakref_type* otherRefs(other.m_refs);
630     T* otherPtr(other.m_ptr);
631     if (otherPtr) otherRefs->incWeak(this);
632     if (m_ptr) m_refs->decWeak(this);
633     m_ptr = otherPtr;
634     m_refs = otherRefs;
635     return *this;
636 }
637 
638 template<typename T>
639 wp<T>& wp<T>::operator = (const sp<T>& other)
640 {
641     weakref_type* newRefs =
642         other != nullptr ? other->createWeak(this) : nullptr;
643     T* otherPtr(other.m_ptr);
644     if (m_ptr) m_refs->decWeak(this);
645     m_ptr = otherPtr;
646     m_refs = newRefs;
647     return *this;
648 }
649 
650 template<typename T> template<typename U>
651 wp<T>& wp<T>::operator = (const wp<U>& other)
652 {
653     weakref_type* otherRefs(other.m_refs);
654     U* otherPtr(other.m_ptr);
655     if (otherPtr) otherRefs->incWeak(this);
656     if (m_ptr) m_refs->decWeak(this);
657     m_ptr = otherPtr;
658     m_refs = otherRefs;
659     return *this;
660 }
661 
662 template<typename T> template<typename U>
663 wp<T>& wp<T>::operator = (const sp<U>& other)
664 {
665     weakref_type* newRefs = other != nullptr ? other->createWeak(this) : nullptr;
666     U* otherPtr(other.m_ptr);
667     if (m_ptr) m_refs->decWeak(this);
668     m_ptr = otherPtr;
669     m_refs = newRefs;
670     return *this;
671 }
672 
673 template<typename T>
set_object_and_refs(T * other,weakref_type * refs)674 void wp<T>::set_object_and_refs(T* other, weakref_type* refs)
675 {
676     if (other) refs->incWeak(this);
677     if (m_ptr) m_refs->decWeak(this);
678     m_ptr = other;
679     m_refs = refs;
680 }
681 
682 template<typename T>
promote()683 sp<T> wp<T>::promote() const
684 {
685     sp<T> result;
686     if (m_ptr && m_refs->attemptIncStrong(&result)) {
687         result.set_pointer(m_ptr);
688     }
689     return result;
690 }
691 
692 template<typename T>
clear()693 void wp<T>::clear()
694 {
695     if (m_ptr) {
696         m_refs->decWeak(this);
697         m_refs = nullptr;
698         m_ptr = nullptr;
699     }
700 }
701 
702 // ---------------------------------------------------------------------------
703 
704 // this class just serves as a namespace so TYPE::moveReferences can stay
705 // private.
706 class ReferenceMover {
707 public:
708     // it would be nice if we could make sure no extra code is generated
709     // for sp<TYPE> or wp<TYPE> when TYPE is a descendant of RefBase:
710     // Using a sp<RefBase> override doesn't work; it's a bit like we wanted
711     // a template<typename TYPE inherits RefBase> template...
712 
713     template<typename TYPE> static inline
move_references(sp<TYPE> * dest,sp<TYPE> const * src,size_t n)714     void move_references(sp<TYPE>* dest, sp<TYPE> const* src, size_t n) {
715 
716         class Renamer : public ReferenceRenamer {
717             sp<TYPE>* d_;
718             sp<TYPE> const* s_;
719             virtual void operator()(size_t i) const {
720                 // The id are known to be the sp<>'s this pointer
721                 TYPE::renameRefId(d_[i].get(), &s_[i], &d_[i]);
722             }
723         public:
724             Renamer(sp<TYPE>* d, sp<TYPE> const* s) : d_(d), s_(s) { }
725             virtual ~Renamer() { }
726         };
727 
728         memmove(dest, src, n*sizeof(sp<TYPE>));
729         TYPE::renameRefs(n, Renamer(dest, src));
730     }
731 
732 
733     template<typename TYPE> static inline
move_references(wp<TYPE> * dest,wp<TYPE> const * src,size_t n)734     void move_references(wp<TYPE>* dest, wp<TYPE> const* src, size_t n) {
735 
736         class Renamer : public ReferenceRenamer {
737             wp<TYPE>* d_;
738             wp<TYPE> const* s_;
739             virtual void operator()(size_t i) const {
740                 // The id are known to be the wp<>'s this pointer
741                 TYPE::renameRefId(d_[i].get_refs(), &s_[i], &d_[i]);
742             }
743         public:
744             Renamer(wp<TYPE>* rd, wp<TYPE> const* rs) : d_(rd), s_(rs) { }
745             virtual ~Renamer() { }
746         };
747 
748         memmove(dest, src, n*sizeof(wp<TYPE>));
749         TYPE::renameRefs(n, Renamer(dest, src));
750     }
751 };
752 
753 // specialization for moving sp<> and wp<> types.
754 // these are used by the [Sorted|Keyed]Vector<> implementations
755 // sp<> and wp<> need to be handled specially, because they do not
756 // have trivial copy operation in the general case (see RefBase.cpp
757 // when DEBUG ops are enabled), but can be implemented very
758 // efficiently in most cases.
759 
760 template<typename TYPE> inline
move_forward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)761 void move_forward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
762     ReferenceMover::move_references(d, s, n);
763 }
764 
765 template<typename TYPE> inline
move_backward_type(sp<TYPE> * d,sp<TYPE> const * s,size_t n)766 void move_backward_type(sp<TYPE>* d, sp<TYPE> const* s, size_t n) {
767     ReferenceMover::move_references(d, s, n);
768 }
769 
770 template<typename TYPE> inline
move_forward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)771 void move_forward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
772     ReferenceMover::move_references(d, s, n);
773 }
774 
775 template<typename TYPE> inline
move_backward_type(wp<TYPE> * d,wp<TYPE> const * s,size_t n)776 void move_backward_type(wp<TYPE>* d, wp<TYPE> const* s, size_t n) {
777     ReferenceMover::move_references(d, s, n);
778 }
779 
780 }  // namespace android
781 
782 namespace libutilsinternal {
783 template <typename T, typename = void>
784 struct is_complete_type : std::false_type {};
785 
786 template <typename T>
787 struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
788 }  // namespace libutilsinternal
789 
790 namespace std {
791 
792 // Define `RefBase` specific versions of `std::make_shared` and
793 // `std::make_unique` to block people from using them. Using them to allocate
794 // `RefBase` objects results in double ownership. Use
795 // `sp<T>::make(...)` instead.
796 //
797 // Note: We exclude incomplete types because `std::is_base_of` is undefined in
798 // that case.
799 
800 template <typename T, typename... Args,
801           typename std::enable_if<libutilsinternal::is_complete_type<T>::value, bool>::value = true,
802           typename std::enable_if<std::is_base_of<android::RefBase, T>::value, bool>::value = true>
803 shared_ptr<T> make_shared(Args...) {  // SEE COMMENT ABOVE.
804     static_assert(!std::is_base_of<android::RefBase, T>::value, "Must use RefBase with sp<>");
805 }
806 
807 template <typename T, typename... Args,
808           typename std::enable_if<libutilsinternal::is_complete_type<T>::value, bool>::value = true,
809           typename std::enable_if<std::is_base_of<android::RefBase, T>::value, bool>::value = true>
810 unique_ptr<T> make_unique(Args...) {  // SEE COMMENT ABOVE.
811     static_assert(!std::is_base_of<android::RefBase, T>::value, "Must use RefBase with sp<>");
812 }
813 
814 }  // namespace std
815 
816 // ---------------------------------------------------------------------------
817 
818 #endif // ANDROID_REF_BASE_H
819