1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * GUID Partition Table and Composite Disk generation code.
19  */
20 
21 #include "host/libs/image_aggregator/image_aggregator.h"
22 
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <fcntl.h>
26 #include <stdio.h>
27 
28 #include <fstream>
29 #include <string>
30 #include <vector>
31 
32 #include <android-base/file.h>
33 #include <android-base/logging.h>
34 #include <android-base/strings.h>
35 #include <cdisk_spec.pb.h>
36 #include <google/protobuf/text_format.h>
37 #include <sparse/sparse.h>
38 #include <uuid.h>
39 #include <zlib.h>
40 
41 #include "common/libs/fs/shared_buf.h"
42 #include "common/libs/fs/shared_fd.h"
43 #include "common/libs/utils/cf_endian.h"
44 #include "common/libs/utils/files.h"
45 #include "common/libs/utils/size_utils.h"
46 #include "common/libs/utils/subprocess.h"
47 #include "host/libs/config/mbr.h"
48 #include "host/libs/image_aggregator/sparse_image_utils.h"
49 
50 namespace cuttlefish {
51 namespace {
52 
53 constexpr int GPT_NUM_PARTITIONS = 128;
54 static const std::string CDISK_MAGIC = "composite_disk\x1d";
55 static const std::string QCOW2_MAGIC = "QFI\xfb";
56 
57 /**
58  * Creates a "Protective" MBR Partition Table header. The GUID
59  * Partition Table Specification recommends putting this on the first sector
60  * of the disk, to protect against old disk formatting tools from misidentifying
61  * the GUID Partition Table later and doing the wrong thing.
62  */
ProtectiveMbr(std::uint64_t size)63 MasterBootRecord ProtectiveMbr(std::uint64_t size) {
64   MasterBootRecord mbr = {
65       .partitions = {{
66           .partition_type = 0xEE,
67           .first_lba = 1,
68           .num_sectors = (std::uint32_t)size / kSectorSize,
69       }},
70       .boot_signature = {0x55, 0xAA},
71   };
72   return mbr;
73 }
74 
75 struct __attribute__((packed)) GptHeader {
76   std::uint8_t signature[8];
77   std::uint8_t revision[4];
78   std::uint32_t header_size;
79   std::uint32_t header_crc32;
80   std::uint32_t reserved;
81   std::uint64_t current_lba;
82   std::uint64_t backup_lba;
83   std::uint64_t first_usable_lba;
84   std::uint64_t last_usable_lba;
85   std::uint8_t disk_guid[16];
86   std::uint64_t partition_entries_lba;
87   std::uint32_t num_partition_entries;
88   std::uint32_t partition_entry_size;
89   std::uint32_t partition_entries_crc32;
90 };
91 
92 static_assert(sizeof(GptHeader) == 92);
93 
94 struct __attribute__((packed)) GptPartitionEntry {
95   std::uint8_t partition_type_guid[16];
96   std::uint8_t unique_partition_guid[16];
97   std::uint64_t first_lba;
98   std::uint64_t last_lba;
99   std::uint64_t attributes;
100   std::uint16_t partition_name[36]; // UTF-16LE
101 };
102 
103 static_assert(sizeof(GptPartitionEntry) == 128);
104 
105 struct __attribute__((packed)) GptBeginning {
106   MasterBootRecord protective_mbr;
107   GptHeader header;
108   std::uint8_t header_padding[kSectorSize - sizeof(GptHeader)];
109   GptPartitionEntry entries[GPT_NUM_PARTITIONS];
110   std::uint8_t partition_alignment[3072];
111 };
112 
113 static_assert(AlignToPowerOf2(sizeof(GptBeginning), PARTITION_SIZE_SHIFT) ==
114               sizeof(GptBeginning));
115 
116 struct __attribute__((packed)) GptEnd {
117   GptPartitionEntry entries[GPT_NUM_PARTITIONS];
118   GptHeader footer;
119   std::uint8_t footer_padding[kSectorSize - sizeof(GptHeader)];
120 };
121 
122 static_assert(sizeof(GptEnd) % kSectorSize == 0);
123 
124 struct PartitionInfo {
125   MultipleImagePartition source;
126   std::uint64_t size;
127   std::uint64_t offset;
128 
AlignedSizecuttlefish::__anon79229f870111::PartitionInfo129   std::uint64_t AlignedSize() const { return AlignToPartitionSize(size); }
130 };
131 
132 struct __attribute__((packed)) QCowHeader {
133   Be32 magic;
134   Be32 version;
135   Be64 backing_file_offset;
136   Be32 backing_file_size;
137   Be32 cluster_bits;
138   Be64 size;
139   Be32 crypt_method;
140   Be32 l1_size;
141   Be64 l1_table_offset;
142   Be64 refcount_table_offset;
143   Be32 refcount_table_clusters;
144   Be32 nb_snapshots;
145   Be64 snapshots_offset;
146 };
147 
148 static_assert(sizeof(QCowHeader) == 72);
149 
150 /*
151  * Returns the expanded file size of `file_path`. Note that the raw size of
152  * files doesn't match how large they may appear inside a VM.
153  *
154  * Supported types: Composite disk image, Qcows2, Android-Sparse, Raw
155  *
156  * Android-Sparse is a file format invented by Android that optimizes for
157  * chunks of zeroes or repeated data. The Android build system can produce
158  * sparse files to save on size of disk files after they are extracted from a
159  * disk file, as the imag eflashing process also can handle Android-Sparse
160  * images.
161  */
ExpandedStorageSize(const std::string & file_path)162 std::uint64_t ExpandedStorageSize(const std::string& file_path) {
163   android::base::unique_fd fd(open(file_path.c_str(), O_RDONLY));
164   CHECK(fd.get() >= 0) << "Could not open \"" << file_path << "\""
165                        << strerror(errno);
166 
167   std::uint64_t file_size = FileSize(file_path);
168 
169   // Try to read the disk in a nicely-aligned block size unless the whole file
170   // is smaller.
171   constexpr uint64_t MAGIC_BLOCK_SIZE = 4096;
172   std::string magic(std::min(file_size, MAGIC_BLOCK_SIZE), '\0');
173   if (!android::base::ReadFully(fd, magic.data(), magic.size())) {
174     PLOG(FATAL) << "Fail to read: " << file_path;
175     return 0;
176   }
177   CHECK(lseek(fd, 0, SEEK_SET) != -1)
178       << "Fail to seek(\"" << file_path << "\")" << strerror(errno);
179 
180   // Composite disk image
181   if (android::base::StartsWith(magic, CDISK_MAGIC)) {
182     // seek to the beginning of proto message
183     CHECK(lseek(fd, CDISK_MAGIC.size(), SEEK_SET) != -1)
184         << "Fail to seek(\"" << file_path << "\")" << strerror(errno);
185     std::string message;
186     if (!android::base::ReadFdToString(fd, &message)) {
187       PLOG(FATAL) << "Fail to read(cdisk): " << file_path;
188       return 0;
189     }
190     CompositeDisk cdisk;
191     if (!cdisk.ParseFromString(message)) {
192       PLOG(FATAL) << "Fail to parse(cdisk): " << file_path;
193       return 0;
194     }
195     return cdisk.length();
196   }
197 
198   // Qcow2 image
199   if (android::base::StartsWith(magic, QCOW2_MAGIC)) {
200     QCowHeader header;
201     if (!android::base::ReadFully(fd, &header, sizeof(QCowHeader))) {
202       PLOG(FATAL) << "Fail to read(qcow2 header): " << file_path;
203       return 0;
204     }
205     return header.size.as_uint64_t();
206   }
207 
208   // Android-Sparse
209   if (auto sparse =
210           sparse_file_import(fd, /* verbose */ false, /* crc */ false);
211       sparse) {
212     auto size = sparse_file_len(sparse, false, true);
213     sparse_file_destroy(sparse);
214     return size;
215   }
216 
217   // raw image file
218   return file_size;
219 }
220 
221 /*
222  * strncpy equivalent for u16 data. GPT disks use UTF16-LE for disk labels.
223  */
u16cpy(std::uint16_t * dest,std::uint16_t * src,std::size_t size)224 void u16cpy(std::uint16_t* dest, std::uint16_t* src, std::size_t size) {
225   while (size > 0 && *src) {
226     *dest = *src;
227     dest++;
228     src++;
229     size--;
230   }
231   if (size > 0) {
232     *dest = 0;
233   }
234 }
235 
ToMultipleImagePartition(ImagePartition source)236 MultipleImagePartition ToMultipleImagePartition(ImagePartition source) {
237   return MultipleImagePartition{
238       .label = source.label,
239       .image_file_paths = std::vector{source.image_file_path},
240       .type = source.type,
241       .read_only = source.read_only,
242   };
243 }
244 
245 /**
246  * Incremental builder class for producing partition tables. Add partitions
247  * one-by-one, then produce specification files
248  */
249 class CompositeDiskBuilder {
250 private:
251   std::vector<PartitionInfo> partitions_;
252   std::uint64_t next_disk_offset_;
253 
GetPartitionGUID(MultipleImagePartition source)254   static const char* GetPartitionGUID(MultipleImagePartition source) {
255     // Due to some endianness mismatch in e2fsprogs GUID vs GPT, the GUIDs are
256     // rearranged to make the right GUIDs appear in gdisk
257     switch (source.type) {
258       case kLinuxFilesystem:
259         // Technically 0FC63DAF-8483-4772-8E79-3D69D8477DE4
260         return "AF3DC60F-8384-7247-8E79-3D69D8477DE4";
261       case kEfiSystemPartition:
262         // Technically C12A7328-F81F-11D2-BA4B-00A0C93EC93B
263         return "28732AC1-1FF8-D211-BA4B-00A0C93EC93B";
264       default:
265         LOG(FATAL) << "Unknown partition type: " << (int) source.type;
266     }
267   }
268 
269 public:
CompositeDiskBuilder()270   CompositeDiskBuilder() : next_disk_offset_(sizeof(GptBeginning)) {}
271 
AppendPartition(ImagePartition source)272   void AppendPartition(ImagePartition source) {
273     AppendPartition(ToMultipleImagePartition(source));
274   }
275 
AppendPartition(MultipleImagePartition source)276   void AppendPartition(MultipleImagePartition source) {
277     uint64_t size = 0;
278     for (const auto& path : source.image_file_paths) {
279       size += ExpandedStorageSize(path);
280     }
281     auto aligned_size = AlignToPartitionSize(size);
282     CHECK(size == aligned_size || source.read_only)
283         << "read-write partition " << source.label
284         << " is not aligned to the size of " << (1 << PARTITION_SIZE_SHIFT);
285     partitions_.push_back(PartitionInfo{
286         .source = source,
287         .size = size,
288         .offset = next_disk_offset_,
289     });
290     next_disk_offset_ = next_disk_offset_ + aligned_size;
291   }
292 
DiskSize() const293   std::uint64_t DiskSize() const {
294     return AlignToPowerOf2(next_disk_offset_ + sizeof(GptEnd), DISK_SIZE_SHIFT);
295   }
296 
297   /**
298    * Generates a composite disk specification file, assuming that `header_file`
299    * and `footer_file` will be populated with the contents of `Beginning()` and
300    * `End()`.
301    */
MakeCompositeDiskSpec(const std::string & header_file,const std::string & footer_file) const302   CompositeDisk MakeCompositeDiskSpec(const std::string& header_file,
303                                       const std::string& footer_file) const {
304     CompositeDisk disk;
305     disk.set_version(2);
306     disk.set_length(DiskSize());
307 
308     ComponentDisk* header = disk.add_component_disks();
309     header->set_file_path(header_file);
310     header->set_offset(0);
311 
312     for (auto& partition : partitions_) {
313       uint64_t size = 0;
314       for (const auto& path : partition.source.image_file_paths) {
315         ComponentDisk* component = disk.add_component_disks();
316         component->set_file_path(path);
317         component->set_offset(partition.offset + size);
318         component->set_read_write_capability(
319             partition.source.read_only ? ReadWriteCapability::READ_ONLY
320                                        : ReadWriteCapability::READ_WRITE);
321         size += ExpandedStorageSize(path);
322       }
323       CHECK(partition.size == size);
324       // When partition's aligned size differs from its (unaligned) size
325       // reading the disk within the guest os would fail due to the gap.
326       // Putting any disk bigger than 4K can fill this gap.
327       // Here we reuse the header which is always > 4K.
328       // We don't fill the "writable" disk's hole and it should be an error
329       // because writes in the guest of can't be reflected to the backing file.
330       if (partition.AlignedSize() != partition.size) {
331         ComponentDisk* component = disk.add_component_disks();
332         component->set_file_path(header_file);
333         component->set_offset(partition.offset + partition.size);
334         component->set_read_write_capability(ReadWriteCapability::READ_ONLY);
335       }
336     }
337 
338     ComponentDisk* footer = disk.add_component_disks();
339     footer->set_file_path(footer_file);
340     footer->set_offset(next_disk_offset_);
341 
342     return disk;
343   }
344 
345   /*
346    * Returns a GUID Partition Table header structure for all the disks that have
347    * been added with `AppendDisk`. Includes a protective MBR.
348    *
349    * This method is not deterministic: some data is generated such as the disk
350    * uuids.
351    */
Beginning() const352   GptBeginning Beginning() const {
353     if (partitions_.size() > GPT_NUM_PARTITIONS) {
354       LOG(FATAL) << "Too many partitions: " << partitions_.size();
355       return {};
356     }
357     GptBeginning gpt = {
358         .protective_mbr = ProtectiveMbr(DiskSize()),
359         .header =
360             {
361                 .signature = {'E', 'F', 'I', ' ', 'P', 'A', 'R', 'T'},
362                 .revision = {0, 0, 1, 0},
363                 .header_size = sizeof(GptHeader),
364                 .current_lba = 1,
365                 .backup_lba = (DiskSize() / kSectorSize) - 1,
366                 .first_usable_lba = sizeof(GptBeginning) / kSectorSize,
367                 .last_usable_lba = (next_disk_offset_ / kSectorSize) - 1,
368                 .partition_entries_lba = 2,
369                 .num_partition_entries = GPT_NUM_PARTITIONS,
370                 .partition_entry_size = sizeof(GptPartitionEntry),
371             },
372     };
373     uuid_generate(gpt.header.disk_guid);
374     for (std::size_t i = 0; i < partitions_.size(); i++) {
375       const auto& partition = partitions_[i];
376       gpt.entries[i] = GptPartitionEntry{
377           .first_lba = partition.offset / kSectorSize,
378           .last_lba =
379               (partition.offset + partition.AlignedSize()) / kSectorSize - 1,
380       };
381       uuid_generate(gpt.entries[i].unique_partition_guid);
382       if (uuid_parse(GetPartitionGUID(partition.source),
383                      gpt.entries[i].partition_type_guid)) {
384         LOG(FATAL) << "Could not parse partition guid";
385       }
386       std::u16string wide_name(partitions_[i].source.label.begin(),
387                               partitions_[i].source.label.end());
388       u16cpy((std::uint16_t*) gpt.entries[i].partition_name,
389             (std::uint16_t*) wide_name.c_str(), 36);
390     }
391     // Not sure these are right, but it works for bpttool
392     gpt.header.partition_entries_crc32 =
393         crc32(0, (std::uint8_t*) gpt.entries,
394               GPT_NUM_PARTITIONS * sizeof(GptPartitionEntry));
395     gpt.header.header_crc32 =
396         crc32(0, (std::uint8_t*) &gpt.header, sizeof(GptHeader));
397     return gpt;
398   }
399 
400   /**
401    * Generates a GUID Partition Table footer that matches the header in `head`.
402    */
End(const GptBeginning & head) const403   GptEnd End(const GptBeginning& head) const {
404     GptEnd gpt;
405     std::memcpy((void*)gpt.entries, (void*)head.entries, sizeof(gpt.entries));
406     gpt.footer = head.header;
407     gpt.footer.partition_entries_lba =
408         (DiskSize() - sizeof(gpt.entries)) / kSectorSize - 1;
409     std::swap(gpt.footer.current_lba, gpt.footer.backup_lba);
410     gpt.footer.header_crc32 = 0;
411     gpt.footer.header_crc32 =
412         crc32(0, (std::uint8_t*) &gpt.footer, sizeof(GptHeader));
413     return gpt;
414   }
415 };
416 
WriteBeginning(SharedFD out,const GptBeginning & beginning)417 bool WriteBeginning(SharedFD out, const GptBeginning& beginning) {
418   std::string begin_str((const char*) &beginning, sizeof(GptBeginning));
419   if (WriteAll(out, begin_str) != begin_str.size()) {
420     LOG(ERROR) << "Could not write GPT beginning: " << out->StrError();
421     return false;
422   }
423   return true;
424 }
425 
WriteEnd(SharedFD out,const GptEnd & end)426 bool WriteEnd(SharedFD out, const GptEnd& end) {
427   auto disk_size = (end.footer.current_lba + 1) * kSectorSize;
428   auto footer_start = (end.footer.last_usable_lba + 1) * kSectorSize;
429   auto padding = disk_size - footer_start - sizeof(GptEnd);
430   std::string padding_str(padding, '\0');
431   if (WriteAll(out, padding_str) != padding_str.size()) {
432     LOG(ERROR) << "Could not write GPT end padding: " << out->StrError();
433     return false;
434   }
435   if (WriteAllBinary(out, &end) != sizeof(end)) {
436     LOG(ERROR) << "Could not write GPT end contents: " << out->StrError();
437     return false;
438   }
439   return true;
440 }
441 
442 /**
443  * Converts any Android-Sparse image files in `partitions` to raw image files.
444  *
445  * Android-Sparse is a file format invented by Android that optimizes for
446  * chunks of zeroes or repeated data. The Android build system can produce
447  * sparse files to save on size of disk files after they are extracted from a
448  * disk file, as the imag eflashing process also can handle Android-Sparse
449  * images.
450  *
451  * crosvm has read-only support for Android-Sparse files, but QEMU does not
452  * support them.
453  */
DeAndroidSparse(const std::vector<ImagePartition> & partitions)454 void DeAndroidSparse(const std::vector<ImagePartition>& partitions) {
455   for (const auto& partition : partitions) {
456     if (!ConvertToRawImage(partition.image_file_path)) {
457       LOG(DEBUG) << "Failed to desparse " << partition.image_file_path;
458     }
459   }
460 }
461 
462 } // namespace
463 
AlignToPartitionSize(uint64_t size)464 uint64_t AlignToPartitionSize(uint64_t size) {
465   return AlignToPowerOf2(size, PARTITION_SIZE_SHIFT);
466 }
467 
AggregateImage(const std::vector<ImagePartition> & partitions,const std::string & output_path)468 void AggregateImage(const std::vector<ImagePartition>& partitions,
469                     const std::string& output_path) {
470   DeAndroidSparse(partitions);
471   CompositeDiskBuilder builder;
472   for (auto& partition : partitions) {
473     builder.AppendPartition(partition);
474   }
475   auto output = SharedFD::Creat(output_path, 0600);
476   auto beginning = builder.Beginning();
477   if (!WriteBeginning(output, beginning)) {
478     LOG(FATAL) << "Could not write GPT beginning to \"" << output_path
479                << "\": " << output->StrError();
480   }
481   for (auto& disk : partitions) {
482     auto disk_fd = SharedFD::Open(disk.image_file_path, O_RDONLY);
483     auto file_size = FileSize(disk.image_file_path);
484     if (!output->CopyFrom(*disk_fd, file_size)) {
485       LOG(FATAL) << "Could not copy from \"" << disk.image_file_path
486                  << "\" to \"" << output_path << "\": " << output->StrError();
487     }
488     // Handle disk images that are not aligned to PARTITION_SIZE_SHIFT
489     std::uint64_t padding = AlignToPartitionSize(file_size) - file_size;
490     std::string padding_str;
491     padding_str.resize(padding, '\0');
492     if (WriteAll(output, padding_str) != padding_str.size()) {
493       LOG(FATAL) << "Could not write partition padding to \"" << output_path
494                  << "\": " << output->StrError();
495     }
496   }
497   if (!WriteEnd(output, builder.End(beginning))) {
498     LOG(FATAL) << "Could not write GPT end to \"" << output_path
499                << "\": " << output->StrError();
500   }
501 };
502 
CreateCompositeDisk(std::vector<ImagePartition> partitions,const std::string & header_file,const std::string & footer_file,const std::string & output_composite_path)503 void CreateCompositeDisk(std::vector<ImagePartition> partitions,
504                          const std::string& header_file,
505                          const std::string& footer_file,
506                          const std::string& output_composite_path) {
507   DeAndroidSparse(partitions);
508   std::vector<MultipleImagePartition> multiple_image_partitions;
509   for (const auto& partition : partitions) {
510     multiple_image_partitions.push_back(ToMultipleImagePartition(partition));
511   }
512   return CreateCompositeDisk(std::move(multiple_image_partitions), header_file,
513                              footer_file, output_composite_path);
514 }
515 
CreateCompositeDisk(std::vector<MultipleImagePartition> partitions,const std::string & header_file,const std::string & footer_file,const std::string & output_composite_path)516 void CreateCompositeDisk(std::vector<MultipleImagePartition> partitions,
517                          const std::string& header_file,
518                          const std::string& footer_file,
519                          const std::string& output_composite_path) {
520   CompositeDiskBuilder builder;
521   for (auto& partition : partitions) {
522     builder.AppendPartition(partition);
523   }
524   auto header = SharedFD::Creat(header_file, 0600);
525   auto beginning = builder.Beginning();
526   if (!WriteBeginning(header, beginning)) {
527     LOG(FATAL) << "Could not write GPT beginning to \"" << header_file
528                << "\": " << header->StrError();
529   }
530   auto footer = SharedFD::Creat(footer_file, 0600);
531   if (!WriteEnd(footer, builder.End(beginning))) {
532     LOG(FATAL) << "Could not write GPT end to \"" << footer_file
533                << "\": " << footer->StrError();
534   }
535   auto composite_proto = builder.MakeCompositeDiskSpec(header_file, footer_file);
536   std::ofstream composite(output_composite_path.c_str(),
537                           std::ios::binary | std::ios::trunc);
538   composite << CDISK_MAGIC;
539   composite_proto.SerializeToOstream(&composite);
540   composite.flush();
541 }
542 
CreateQcowOverlay(const std::string & crosvm_path,const std::string & backing_file,const std::string & output_overlay_path)543 void CreateQcowOverlay(const std::string& crosvm_path,
544                        const std::string& backing_file,
545                        const std::string& output_overlay_path) {
546   Command cmd(crosvm_path);
547   cmd.AddParameter("create_qcow2");
548   cmd.AddParameter("--backing-file");
549   cmd.AddParameter(backing_file);
550   cmd.AddParameter(output_overlay_path);
551 
552   std::string stdout_str;
553   std::string stderr_str;
554   int success =
555       RunWithManagedStdio(std::move(cmd), nullptr, &stdout_str, &stderr_str);
556 
557   if (success != 0) {
558     LOG(ERROR) << "Failed to run `" << crosvm_path
559                << " create_qcow2 --backing-file " << backing_file << " "
560                << output_overlay_path << "`";
561     LOG(ERROR) << "stdout:\n###\n" << stdout_str << "\n###";
562     LOG(ERROR) << "stderr:\n###\n" << stderr_str << "\n###";
563     LOG(FATAL) << "Return code: \"" << success << "\"";
564   }
565 }
566 
567 } // namespace cuttlefish
568