1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2022 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 #if !defined(ASTCENC_DECOMPRESS_ONLY)
19
20 /**
21 * @brief Functions for finding best partition for a block.
22 *
23 * The partition search operates in two stages. The first pass uses kmeans clustering to group
24 * texels into an ideal partitioning for the requested partition count, and then compares that
25 * against the 1024 partitionings generated by the ASTC partition hash function. The generated
26 * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
27 * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
28 * partitionings that actually generate fewer than the requested partition count, but only the top
29 * N candidates are actually put through a more detailed search. N is determined by the compressor
30 * quality preset.
31 *
32 * For the detailed search, each candidate is checked against two possible encoding methods:
33 *
34 * - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
35 * - The best partitioning assuming same chroma colors (RGB + scale endpoints).
36 *
37 * This is implemented by computing the compute mean color and dominant direction for each
38 * partition. This defines two lines, both of which go through the mean color value.
39 *
40 * - One line has a direction defined by the dominant direction; this is used to assess the error
41 * from using an uncorrelated color representation.
42 * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
43 * (RGB + scale) color representation.
44 *
45 * The best candidate is selected by computing the squared-errors that result from using these
46 * lines for endpoint selection.
47 */
48
49 #include <limits>
50 #include "astcenc_internal.h"
51
52 /**
53 * @brief Pick some initial kmeans cluster centers.
54 *
55 * @param blk The image block color data to compress.
56 * @param texel_count The number of texels in the block.
57 * @param partition_count The number of partitions in the block.
58 * @param[out] cluster_centers The initial partition cluster center colors.
59 */
kmeans_init(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS])60 static void kmeans_init(
61 const image_block& blk,
62 unsigned int texel_count,
63 unsigned int partition_count,
64 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
65 ) {
66 promise(texel_count > 0);
67 promise(partition_count > 0);
68
69 unsigned int clusters_selected = 0;
70 float distances[BLOCK_MAX_TEXELS];
71
72 // Pick a random sample as first cluster center; 145897 from random.org
73 unsigned int sample = 145897 % texel_count;
74 vfloat4 center_color = blk.texel(sample);
75 cluster_centers[clusters_selected] = center_color;
76 clusters_selected++;
77
78 // Compute the distance to the first cluster center
79 float distance_sum = 0.0f;
80 for (unsigned int i = 0; i < texel_count; i++)
81 {
82 vfloat4 color = blk.texel(i);
83 vfloat4 diff = color - center_color;
84 float distance = dot_s(diff * diff, blk.channel_weight);
85 distance_sum += distance;
86 distances[i] = distance;
87 }
88
89 // More numbers from random.org for weighted-random center selection
90 const float cluster_cutoffs[9] {
91 0.626220f, 0.932770f, 0.275454f,
92 0.318558f, 0.240113f, 0.009190f,
93 0.347661f, 0.731960f, 0.156391f
94 };
95
96 unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
97
98 // Pick the remaining samples as needed
99 while (true)
100 {
101 // Pick the next center in a weighted-random fashion.
102 float summa = 0.0f;
103 float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
104 for (sample = 0; sample < texel_count; sample++)
105 {
106 summa += distances[sample];
107 if (summa >= distance_cutoff)
108 {
109 break;
110 }
111 }
112
113 // Clamp to a valid range and store the selected cluster center
114 sample = astc::min(sample, texel_count - 1);
115
116 center_color = blk.texel(sample);
117 cluster_centers[clusters_selected++] = center_color;
118 if (clusters_selected >= partition_count)
119 {
120 break;
121 }
122
123 // Compute the distance to the new cluster center, keep the min dist
124 distance_sum = 0.0f;
125 for (unsigned int i = 0; i < texel_count; i++)
126 {
127 vfloat4 color = blk.texel(i);
128 vfloat4 diff = color - center_color;
129 float distance = dot_s(diff * diff, blk.channel_weight);
130 distance = astc::min(distance, distances[i]);
131 distance_sum += distance;
132 distances[i] = distance;
133 }
134 }
135 }
136
137 /**
138 * @brief Assign texels to clusters, based on a set of chosen center points.
139 *
140 * @param blk The image block color data to compress.
141 * @param texel_count The number of texels in the block.
142 * @param partition_count The number of partitions in the block.
143 * @param cluster_centers The partition cluster center colors.
144 * @param[out] partition_of_texel The partition assigned for each texel.
145 */
kmeans_assign(const image_block & blk,unsigned int texel_count,unsigned int partition_count,const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],uint8_t partition_of_texel[BLOCK_MAX_TEXELS])146 static void kmeans_assign(
147 const image_block& blk,
148 unsigned int texel_count,
149 unsigned int partition_count,
150 const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
151 uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
152 ) {
153 promise(texel_count > 0);
154 promise(partition_count > 0);
155
156 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
157
158 // Find the best partition for every texel
159 for (unsigned int i = 0; i < texel_count; i++)
160 {
161 float best_distance = std::numeric_limits<float>::max();
162 unsigned int best_partition = 0;
163
164 vfloat4 color = blk.texel(i);
165 for (unsigned int j = 0; j < partition_count; j++)
166 {
167 vfloat4 diff = color - cluster_centers[j];
168 float distance = dot_s(diff * diff, blk.channel_weight);
169 if (distance < best_distance)
170 {
171 best_distance = distance;
172 best_partition = j;
173 }
174 }
175
176 partition_of_texel[i] = static_cast<uint8_t>(best_partition);
177 partition_texel_count[best_partition]++;
178 }
179
180 // It is possible to get a situation where a partition ends up without any texels. In this case,
181 // assign texel N to partition N. This is silly, but ensures that every partition retains at
182 // least one texel. Reassigning a texel in this manner may cause another partition to go empty,
183 // so if we actually did a reassignment, run the whole loop over again.
184 bool problem_case;
185 do
186 {
187 problem_case = false;
188 for (unsigned int i = 0; i < partition_count; i++)
189 {
190 if (partition_texel_count[i] == 0)
191 {
192 partition_texel_count[partition_of_texel[i]]--;
193 partition_texel_count[i]++;
194 partition_of_texel[i] = static_cast<uint8_t>(i);
195 problem_case = true;
196 }
197 }
198 } while (problem_case);
199 }
200
201 /**
202 * @brief Compute new cluster centers based on their center of gravity.
203 *
204 * @param blk The image block color data to compress.
205 * @param texel_count The number of texels in the block.
206 * @param partition_count The number of partitions in the block.
207 * @param[out] cluster_centers The new cluster center colors.
208 * @param partition_of_texel The partition assigned for each texel.
209 */
kmeans_update(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],const uint8_t partition_of_texel[BLOCK_MAX_TEXELS])210 static void kmeans_update(
211 const image_block& blk,
212 unsigned int texel_count,
213 unsigned int partition_count,
214 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
215 const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
216 ) {
217 promise(texel_count > 0);
218 promise(partition_count > 0);
219
220 vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
221 vfloat4::zero(),
222 vfloat4::zero(),
223 vfloat4::zero(),
224 vfloat4::zero()
225 };
226
227 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
228
229 // Find the center-of-gravity in each cluster
230 for (unsigned int i = 0; i < texel_count; i++)
231 {
232 uint8_t partition = partition_of_texel[i];
233 color_sum[partition] += blk.texel(i);
234 partition_texel_count[partition]++;
235 }
236
237 // Set the center of gravity to be the new cluster center
238 for (unsigned int i = 0; i < partition_count; i++)
239 {
240 float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
241 cluster_centers[i] = color_sum[i] * scale;
242 }
243 }
244
245 /**
246 * @brief Compute bit-mismatch for partitioning in 2-partition mode.
247 *
248 * @param a The texel assignment bitvector for the block.
249 * @param b The texel assignment bitvector for the partition table.
250 *
251 * @return The number of bit mismatches.
252 */
partition_mismatch2(const uint64_t a[2],const uint64_t b[2])253 static inline unsigned int partition_mismatch2(
254 const uint64_t a[2],
255 const uint64_t b[2]
256 ) {
257 int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
258 int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
259 return astc::min(v1, v2);
260 }
261
262 /**
263 * @brief Compute bit-mismatch for partitioning in 3-partition mode.
264 *
265 * @param a The texel assignment bitvector for the block.
266 * @param b The texel assignment bitvector for the partition table.
267 *
268 * @return The number of bit mismatches.
269 */
partition_mismatch3(const uint64_t a[3],const uint64_t b[3])270 static inline unsigned int partition_mismatch3(
271 const uint64_t a[3],
272 const uint64_t b[3]
273 ) {
274 int p00 = popcount(a[0] ^ b[0]);
275 int p01 = popcount(a[0] ^ b[1]);
276 int p02 = popcount(a[0] ^ b[2]);
277
278 int p10 = popcount(a[1] ^ b[0]);
279 int p11 = popcount(a[1] ^ b[1]);
280 int p12 = popcount(a[1] ^ b[2]);
281
282 int p20 = popcount(a[2] ^ b[0]);
283 int p21 = popcount(a[2] ^ b[1]);
284 int p22 = popcount(a[2] ^ b[2]);
285
286 int s0 = p11 + p22;
287 int s1 = p12 + p21;
288 int v0 = astc::min(s0, s1) + p00;
289
290 int s2 = p10 + p22;
291 int s3 = p12 + p20;
292 int v1 = astc::min(s2, s3) + p01;
293
294 int s4 = p10 + p21;
295 int s5 = p11 + p20;
296 int v2 = astc::min(s4, s5) + p02;
297
298 return astc::min(v0, v1, v2);
299 }
300
301 /**
302 * @brief Compute bit-mismatch for partitioning in 4-partition mode.
303 *
304 * @param a The texel assignment bitvector for the block.
305 * @param b The texel assignment bitvector for the partition table.
306 *
307 * @return The number of bit mismatches.
308 */
partition_mismatch4(const uint64_t a[4],const uint64_t b[4])309 static inline unsigned int partition_mismatch4(
310 const uint64_t a[4],
311 const uint64_t b[4]
312 ) {
313 int p00 = popcount(a[0] ^ b[0]);
314 int p01 = popcount(a[0] ^ b[1]);
315 int p02 = popcount(a[0] ^ b[2]);
316 int p03 = popcount(a[0] ^ b[3]);
317
318 int p10 = popcount(a[1] ^ b[0]);
319 int p11 = popcount(a[1] ^ b[1]);
320 int p12 = popcount(a[1] ^ b[2]);
321 int p13 = popcount(a[1] ^ b[3]);
322
323 int p20 = popcount(a[2] ^ b[0]);
324 int p21 = popcount(a[2] ^ b[1]);
325 int p22 = popcount(a[2] ^ b[2]);
326 int p23 = popcount(a[2] ^ b[3]);
327
328 int p30 = popcount(a[3] ^ b[0]);
329 int p31 = popcount(a[3] ^ b[1]);
330 int p32 = popcount(a[3] ^ b[2]);
331 int p33 = popcount(a[3] ^ b[3]);
332
333 int mx23 = astc::min(p22 + p33, p23 + p32);
334 int mx13 = astc::min(p21 + p33, p23 + p31);
335 int mx12 = astc::min(p21 + p32, p22 + p31);
336 int mx03 = astc::min(p20 + p33, p23 + p30);
337 int mx02 = astc::min(p20 + p32, p22 + p30);
338 int mx01 = astc::min(p21 + p30, p20 + p31);
339
340 int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
341 int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
342 int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
343 int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
344
345 return astc::min(v0, v1, v2, v3);
346 }
347
348 using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
349
350 /**
351 * @brief Count the partition table mismatches vs the data clustering.
352 *
353 * @param bsd The block size information.
354 * @param partition_count The number of partitions in the block.
355 * @param bitmaps The block texel partition assignment patterns.
356 * @param[out] mismatch_counts The array storing per partitioning mismatch counts.
357 */
count_partition_mismatch_bits(const block_size_descriptor & bsd,unsigned int partition_count,const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS])358 static void count_partition_mismatch_bits(
359 const block_size_descriptor& bsd,
360 unsigned int partition_count,
361 const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
362 unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS]
363 ) {
364 unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
365
366 if (partition_count == 2)
367 {
368 for (unsigned int i = 0; i < active_count; i++)
369 {
370 mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
371 }
372 }
373 else if (partition_count == 3)
374 {
375 for (unsigned int i = 0; i < active_count; i++)
376 {
377 mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
378 }
379 }
380 else
381 {
382 for (unsigned int i = 0; i < active_count; i++)
383 {
384 mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
385 }
386 }
387 }
388
389 /**
390 * @brief Use counting sort on the mismatch array to sort partition candidates.
391 *
392 * @param partitioning_count The number of packed partitionings.
393 * @param mismatch_count Partitioning mismatch counts, in index order.
394 * @param[out] partition_ordering Partition index values, in mismatch order.
395 *
396 * @return The number of active partitions in this selection.
397 */
get_partition_ordering_by_mismatch_bits(unsigned int partitioning_count,const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS],unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS])398 static unsigned int get_partition_ordering_by_mismatch_bits(
399 unsigned int partitioning_count,
400 const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS],
401 unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS]
402 ) {
403 unsigned int mscount[256] { 0 };
404
405 // Create the histogram of mismatch counts
406 for (unsigned int i = 0; i < partitioning_count; i++)
407 {
408 mscount[mismatch_count[i]]++;
409 }
410
411 unsigned int active_count = partitioning_count - mscount[255];
412
413 // Create a running sum from the histogram array
414 // Cells store previous values only; i.e. exclude self after sum
415 unsigned int summa = 0;
416 for (unsigned int i = 0; i < 256; i++)
417 {
418 unsigned int cnt = mscount[i];
419 mscount[i] = summa;
420 summa += cnt;
421 }
422
423 // Use the running sum as the index, incrementing after read to allow
424 // sequential entries with the same count
425 for (unsigned int i = 0; i < partitioning_count; i++)
426 {
427 unsigned int idx = mscount[mismatch_count[i]]++;
428 partition_ordering[idx] = i;
429 }
430
431 return active_count;
432 }
433
434 /**
435 * @brief Use k-means clustering to compute a partition ordering for a block..
436 *
437 * @param bsd The block size information.
438 * @param blk The image block color data to compress.
439 * @param partition_count The desired number of partitions in the block.
440 * @param[out] partition_ordering The list of recommended partition indices, in priority order.
441 *
442 * @return The number of active partitionings in this selection.
443 */
compute_kmeans_partition_ordering(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS])444 static unsigned int compute_kmeans_partition_ordering(
445 const block_size_descriptor& bsd,
446 const image_block& blk,
447 unsigned int partition_count,
448 unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS]
449 ) {
450 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
451 uint8_t texel_partitions[BLOCK_MAX_TEXELS];
452
453 // Use three passes of k-means clustering to partition the block data
454 for (unsigned int i = 0; i < 3; i++)
455 {
456 if (i == 0)
457 {
458 kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
459 }
460 else
461 {
462 kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
463 }
464
465 kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
466 }
467
468 // Construct the block bitmaps of texel assignments to each partition
469 uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
470 unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
471 promise(texels_to_process > 0);
472 for (unsigned int i = 0; i < texels_to_process; i++)
473 {
474 unsigned int idx = bsd.kmeans_texels[i];
475 bitmaps[texel_partitions[idx]] |= 1ULL << i;
476 }
477
478 // Count the mismatch between the block and the format's partition tables
479 unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS];
480 count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
481
482 // Sort the partitions based on the number of mismatched bits
483 return get_partition_ordering_by_mismatch_bits(
484 bsd.partitioning_count_selected[partition_count - 1],
485 mismatch_counts, partition_ordering);
486 }
487
488 /**
489 * @brief Insert a partitioning into an order list of results, sorted by error.
490 *
491 * @param max_values The max number of entries in the best result arrays/
492 * @param this_error The error of the new entry.
493 * @param this_partition The partition ID of the new entry.
494 * @param[out] best_errors The array of best error values.
495 * @param[out] best_partitions The array of best partition values.
496 */
insert_result(unsigned int max_values,float this_error,unsigned int this_partition,float * best_errors,unsigned int * best_partitions)497 static void insert_result(
498 unsigned int max_values,
499 float this_error,
500 unsigned int this_partition,
501 float* best_errors,
502 unsigned int* best_partitions)
503 {
504 // Don't bother searching if the current worst error beats the new error
505 if (this_error >= best_errors[max_values - 1])
506 {
507 return;
508 }
509
510 // Else insert into the list in error-order
511 for (unsigned int i = 0; i < max_values; i++)
512 {
513 // Existing result is better - move on ...
514 if (this_error > best_errors[i])
515 {
516 continue;
517 }
518
519 // Move existing results down one
520 for (unsigned int j = max_values - 1; j > i; j--)
521 {
522 best_errors[j] = best_errors[j - 1];
523 best_partitions[j] = best_partitions[j - 1];
524 }
525
526 // Insert new result
527 best_errors[i] = this_error;
528 best_partitions[i] = this_partition;
529 break;
530 }
531 }
532
533 /* See header for documentation. */
find_best_partition_candidates(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_search_limit,unsigned int best_partitions[BLOCK_MAX_PARTITIONINGS],unsigned int requested_candidates)534 unsigned int find_best_partition_candidates(
535 const block_size_descriptor& bsd,
536 const image_block& blk,
537 unsigned int partition_count,
538 unsigned int partition_search_limit,
539 unsigned int best_partitions[BLOCK_MAX_PARTITIONINGS],
540 unsigned int requested_candidates
541 ) {
542 // Constant used to estimate quantization error for a given partitioning; the optimal value for
543 // this depends on bitrate. These values have been determined empirically.
544 unsigned int texels_per_block = bsd.texel_count;
545 float weight_imprecision_estim = 0.055f;
546 if (texels_per_block <= 20)
547 {
548 weight_imprecision_estim = 0.03f;
549 }
550 else if (texels_per_block <= 31)
551 {
552 weight_imprecision_estim = 0.04f;
553 }
554 else if (texels_per_block <= 41)
555 {
556 weight_imprecision_estim = 0.05f;
557 }
558
559 promise(partition_count > 0);
560 promise(partition_search_limit > 0);
561
562 weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
563
564 unsigned int partition_sequence[BLOCK_MAX_PARTITIONINGS];
565 unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
566 partition_search_limit = astc::min(partition_search_limit, sequence_len);
567 requested_candidates = astc::min(partition_search_limit, requested_candidates);
568
569 bool uses_alpha = !blk.is_constant_channel(3);
570
571 // Partitioning errors assuming uncorrelated-chrominance endpoints
572 float uncor_best_errors[TUNE_MAX_PARTITIIONING_CANDIDATES];
573 unsigned int uncor_best_partitions[TUNE_MAX_PARTITIIONING_CANDIDATES];
574
575 // Partitioning errors assuming same-chrominance endpoints
576 float samec_best_errors[TUNE_MAX_PARTITIIONING_CANDIDATES];
577 unsigned int samec_best_partitions[TUNE_MAX_PARTITIIONING_CANDIDATES];
578
579 for (unsigned int i = 0; i < requested_candidates; i++)
580 {
581 uncor_best_errors[i] = ERROR_CALC_DEFAULT;
582 samec_best_errors[i] = ERROR_CALC_DEFAULT;
583 }
584
585 if (uses_alpha)
586 {
587 for (unsigned int i = 0; i < partition_search_limit; i++)
588 {
589 unsigned int partition = partition_sequence[i];
590 const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
591
592 // Compute weighting to give to each component in each partition
593 partition_metrics pms[BLOCK_MAX_PARTITIONS];
594
595 compute_avgs_and_dirs_4_comp(pi, blk, pms);
596
597 line4 uncor_lines[BLOCK_MAX_PARTITIONS];
598 line4 samec_lines[BLOCK_MAX_PARTITIONS];
599
600 processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
601 processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
602
603 float uncor_line_lens[BLOCK_MAX_PARTITIONS];
604 float samec_line_lens[BLOCK_MAX_PARTITIONS];
605
606 for (unsigned int j = 0; j < partition_count; j++)
607 {
608 partition_metrics& pm = pms[j];
609
610 uncor_lines[j].a = pm.avg;
611 uncor_lines[j].b = normalize_safe(pm.dir, unit4());
612
613 uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
614 uncor_plines[j].bs = uncor_lines[j].b;
615
616 samec_lines[j].a = vfloat4::zero();
617 samec_lines[j].b = normalize_safe(pm.avg, unit4());
618
619 samec_plines[j].amod = vfloat4::zero();
620 samec_plines[j].bs = samec_lines[j].b;
621 }
622
623 float uncor_error = 0.0f;
624 float samec_error = 0.0f;
625
626 compute_error_squared_rgba(pi,
627 blk,
628 uncor_plines,
629 samec_plines,
630 uncor_line_lens,
631 samec_line_lens,
632 uncor_error,
633 samec_error);
634
635 // Compute an estimate of error introduced by weight quantization imprecision.
636 // This error is computed as follows, for each partition
637 // 1: compute the principal-axis vector (full length) in error-space
638 // 2: convert the principal-axis vector to regular RGB-space
639 // 3: scale the vector by a constant that estimates average quantization error
640 // 4: for each texel, square the vector, then do a dot-product with the texel's
641 // error weight; sum up the results across all texels.
642 // 4(optimized): square the vector once, then do a dot-product with the average
643 // texel error, then multiply by the number of texels.
644
645 for (unsigned int j = 0; j < partition_count; j++)
646 {
647 float tpp = static_cast<float>(pi.partition_texel_count[j]);
648 vfloat4 error_weights(tpp * weight_imprecision_estim);
649
650 vfloat4 uncor_vector = uncor_lines[j].b * uncor_line_lens[j];
651 vfloat4 samec_vector = samec_lines[j].b * samec_line_lens[j];
652
653 uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
654 samec_error += dot_s(samec_vector * samec_vector, error_weights);
655 }
656
657 insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
658 insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
659 }
660 }
661 else
662 {
663 for (unsigned int i = 0; i < partition_search_limit; i++)
664 {
665 unsigned int partition = partition_sequence[i];
666 const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
667
668 // Compute weighting to give to each component in each partition
669 partition_metrics pms[BLOCK_MAX_PARTITIONS];
670 compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
671
672 partition_lines3 plines[BLOCK_MAX_PARTITIONS];
673
674 for (unsigned int j = 0; j < partition_count; j++)
675 {
676 partition_metrics& pm = pms[j];
677 partition_lines3& pl = plines[j];
678
679 pl.uncor_line.a = pm.avg;
680 pl.uncor_line.b = normalize_safe(pm.dir, unit3());
681
682 pl.samec_line.a = vfloat4::zero();
683 pl.samec_line.b = normalize_safe(pm.avg, unit3());
684
685 pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
686 pl.uncor_pline.bs = pl.uncor_line.b;
687
688 pl.samec_pline.amod = vfloat4::zero();
689 pl.samec_pline.bs = pl.samec_line.b;
690 }
691
692 float uncor_error = 0.0f;
693 float samec_error = 0.0f;
694
695 compute_error_squared_rgb(pi,
696 blk,
697 plines,
698 uncor_error,
699 samec_error);
700
701 // Compute an estimate of error introduced by weight quantization imprecision.
702 // This error is computed as follows, for each partition
703 // 1: compute the principal-axis vector (full length) in error-space
704 // 2: convert the principal-axis vector to regular RGB-space
705 // 3: scale the vector by a constant that estimates average quantization error
706 // 4: for each texel, square the vector, then do a dot-product with the texel's
707 // error weight; sum up the results across all texels.
708 // 4(optimized): square the vector once, then do a dot-product with the average
709 // texel error, then multiply by the number of texels.
710
711 for (unsigned int j = 0; j < partition_count; j++)
712 {
713 partition_lines3& pl = plines[j];
714
715 float tpp = static_cast<float>(pi.partition_texel_count[j]);
716 vfloat4 error_weights(tpp * weight_imprecision_estim);
717
718 vfloat4 uncor_vector = pl.uncor_line.b * pl.uncor_line_len;
719 vfloat4 samec_vector = pl.samec_line.b * pl.samec_line_len;
720
721 uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
722 samec_error += dot3_s(samec_vector * samec_vector, error_weights);
723 }
724
725 insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
726 insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
727 }
728 }
729
730 bool best_is_uncor = uncor_best_partitions[0] > samec_best_partitions[0];
731
732 unsigned int interleave[2 * TUNE_MAX_PARTITIIONING_CANDIDATES];
733 for (unsigned int i = 0; i < requested_candidates; i++)
734 {
735 if (best_is_uncor)
736 {
737 interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
738 interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
739 }
740 else
741 {
742 interleave[2 * i] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
743 interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
744 }
745 }
746
747 uint64_t bitmasks[1024/64] { 0 };
748 unsigned int emitted = 0;
749
750 // Deduplicate the first "requested" entries
751 for (unsigned int i = 0; i < requested_candidates * 2; i++)
752 {
753 unsigned int partition = interleave[i];
754
755 unsigned int word = partition / 64;
756 unsigned int bit = partition % 64;
757
758 bool written = bitmasks[word] & (1ull << bit);
759
760 if (!written)
761 {
762 best_partitions[emitted] = partition;
763 bitmasks[word] |= 1ull << bit;
764 emitted++;
765
766 if (emitted == requested_candidates)
767 {
768 break;
769 }
770 }
771 }
772
773 return emitted;
774 }
775
776 #endif
777