1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2022 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 #if !defined(ASTCENC_DECOMPRESS_ONLY)
19 
20 /**
21  * @brief Functions for finding best partition for a block.
22  *
23  * The partition search operates in two stages. The first pass uses kmeans clustering to group
24  * texels into an ideal partitioning for the requested partition count, and then compares that
25  * against the 1024 partitionings generated by the ASTC partition hash function. The generated
26  * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
27  * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
28  * partitionings that actually generate fewer than the requested partition count, but only the top
29  * N candidates are actually put through a more detailed search. N is determined by the compressor
30  * quality preset.
31  *
32  * For the detailed search, each candidate is checked against two possible encoding methods:
33  *
34  *   - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
35  *   - The best partitioning assuming same chroma colors (RGB + scale endpoints).
36  *
37  * This is implemented by computing the compute mean color and dominant direction for each
38  * partition. This defines two lines, both of which go through the mean color value.
39  *
40  * - One line has a direction defined by the dominant direction; this is used to assess the error
41  *   from using an uncorrelated color representation.
42  * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
43  *   (RGB + scale) color representation.
44  *
45  * The best candidate is selected by computing the squared-errors that result from using these
46  * lines for endpoint selection.
47  */
48 
49 #include <limits>
50 #include "astcenc_internal.h"
51 
52 /**
53  * @brief Pick some initial kmeans cluster centers.
54  *
55  * @param      blk               The image block color data to compress.
56  * @param      texel_count       The number of texels in the block.
57  * @param      partition_count   The number of partitions in the block.
58  * @param[out] cluster_centers   The initial partition cluster center colors.
59  */
kmeans_init(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS])60 static void kmeans_init(
61 	const image_block& blk,
62 	unsigned int texel_count,
63 	unsigned int partition_count,
64 	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
65 ) {
66 	promise(texel_count > 0);
67 	promise(partition_count > 0);
68 
69 	unsigned int clusters_selected = 0;
70 	float distances[BLOCK_MAX_TEXELS];
71 
72 	// Pick a random sample as first cluster center; 145897 from random.org
73 	unsigned int sample = 145897 % texel_count;
74 	vfloat4 center_color = blk.texel(sample);
75 	cluster_centers[clusters_selected] = center_color;
76 	clusters_selected++;
77 
78 	// Compute the distance to the first cluster center
79 	float distance_sum = 0.0f;
80 	for (unsigned int i = 0; i < texel_count; i++)
81 	{
82 		vfloat4 color = blk.texel(i);
83 		vfloat4 diff = color - center_color;
84 		float distance = dot_s(diff * diff, blk.channel_weight);
85 		distance_sum += distance;
86 		distances[i] = distance;
87 	}
88 
89 	// More numbers from random.org for weighted-random center selection
90 	const float cluster_cutoffs[9] {
91 		0.626220f, 0.932770f, 0.275454f,
92 		0.318558f, 0.240113f, 0.009190f,
93 		0.347661f, 0.731960f, 0.156391f
94 	};
95 
96 	unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
97 
98 	// Pick the remaining samples as needed
99 	while (true)
100 	{
101 		// Pick the next center in a weighted-random fashion.
102 		float summa = 0.0f;
103 		float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
104 		for (sample = 0; sample < texel_count; sample++)
105 		{
106 			summa += distances[sample];
107 			if (summa >= distance_cutoff)
108 			{
109 				break;
110 			}
111 		}
112 
113 		// Clamp to a valid range and store the selected cluster center
114 		sample = astc::min(sample, texel_count - 1);
115 
116 		center_color = blk.texel(sample);
117 		cluster_centers[clusters_selected++] = center_color;
118 		if (clusters_selected >= partition_count)
119 		{
120 			break;
121 		}
122 
123 		// Compute the distance to the new cluster center, keep the min dist
124 		distance_sum = 0.0f;
125 		for (unsigned int i = 0; i < texel_count; i++)
126 		{
127 			vfloat4 color = blk.texel(i);
128 			vfloat4 diff = color - center_color;
129 			float distance = dot_s(diff * diff, blk.channel_weight);
130 			distance = astc::min(distance, distances[i]);
131 			distance_sum += distance;
132 			distances[i] = distance;
133 		}
134 	}
135 }
136 
137 /**
138  * @brief Assign texels to clusters, based on a set of chosen center points.
139  *
140  * @param      blk                  The image block color data to compress.
141  * @param      texel_count          The number of texels in the block.
142  * @param      partition_count      The number of partitions in the block.
143  * @param      cluster_centers      The partition cluster center colors.
144  * @param[out] partition_of_texel   The partition assigned for each texel.
145  */
kmeans_assign(const image_block & blk,unsigned int texel_count,unsigned int partition_count,const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],uint8_t partition_of_texel[BLOCK_MAX_TEXELS])146 static void kmeans_assign(
147 	const image_block& blk,
148 	unsigned int texel_count,
149 	unsigned int partition_count,
150 	const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
151 	uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
152 ) {
153 	promise(texel_count > 0);
154 	promise(partition_count > 0);
155 
156 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
157 
158 	// Find the best partition for every texel
159 	for (unsigned int i = 0; i < texel_count; i++)
160 	{
161 		float best_distance = std::numeric_limits<float>::max();
162 		unsigned int best_partition = 0;
163 
164 		vfloat4 color = blk.texel(i);
165 		for (unsigned int j = 0; j < partition_count; j++)
166 		{
167 			vfloat4 diff = color - cluster_centers[j];
168 			float distance = dot_s(diff * diff, blk.channel_weight);
169 			if (distance < best_distance)
170 			{
171 				best_distance = distance;
172 				best_partition = j;
173 			}
174 		}
175 
176 		partition_of_texel[i] = static_cast<uint8_t>(best_partition);
177 		partition_texel_count[best_partition]++;
178 	}
179 
180 	// It is possible to get a situation where a partition ends up without any texels. In this case,
181 	// assign texel N to partition N. This is silly, but ensures that every partition retains at
182 	// least one texel. Reassigning a texel in this manner may cause another partition to go empty,
183 	// so if we actually did a reassignment, run the whole loop over again.
184 	bool problem_case;
185 	do
186 	{
187 		problem_case = false;
188 		for (unsigned int i = 0; i < partition_count; i++)
189 		{
190 			if (partition_texel_count[i] == 0)
191 			{
192 				partition_texel_count[partition_of_texel[i]]--;
193 				partition_texel_count[i]++;
194 				partition_of_texel[i] = static_cast<uint8_t>(i);
195 				problem_case = true;
196 			}
197 		}
198 	} while (problem_case);
199 }
200 
201 /**
202  * @brief Compute new cluster centers based on their center of gravity.
203  *
204  * @param       blk                  The image block color data to compress.
205  * @param       texel_count          The number of texels in the block.
206  * @param       partition_count      The number of partitions in the block.
207  * @param[out]  cluster_centers      The new cluster center colors.
208  * @param       partition_of_texel   The partition assigned for each texel.
209  */
kmeans_update(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],const uint8_t partition_of_texel[BLOCK_MAX_TEXELS])210 static void kmeans_update(
211 	const image_block& blk,
212 	unsigned int texel_count,
213 	unsigned int partition_count,
214 	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
215 	const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
216 ) {
217 	promise(texel_count > 0);
218 	promise(partition_count > 0);
219 
220 	vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
221 		vfloat4::zero(),
222 		vfloat4::zero(),
223 		vfloat4::zero(),
224 		vfloat4::zero()
225 	};
226 
227 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
228 
229 	// Find the center-of-gravity in each cluster
230 	for (unsigned int i = 0; i < texel_count; i++)
231 	{
232 		uint8_t partition = partition_of_texel[i];
233 		color_sum[partition] += blk.texel(i);
234 		partition_texel_count[partition]++;
235 	}
236 
237 	// Set the center of gravity to be the new cluster center
238 	for (unsigned int i = 0; i < partition_count; i++)
239 	{
240 		float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
241 		cluster_centers[i] = color_sum[i] * scale;
242 	}
243 }
244 
245 /**
246  * @brief Compute bit-mismatch for partitioning in 2-partition mode.
247  *
248  * @param a   The texel assignment bitvector for the block.
249  * @param b   The texel assignment bitvector for the partition table.
250  *
251  * @return    The number of bit mismatches.
252  */
partition_mismatch2(const uint64_t a[2],const uint64_t b[2])253 static inline unsigned int partition_mismatch2(
254 	const uint64_t a[2],
255 	const uint64_t b[2]
256 ) {
257 	int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
258 	int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
259 	return astc::min(v1, v2);
260 }
261 
262 /**
263  * @brief Compute bit-mismatch for partitioning in 3-partition mode.
264  *
265  * @param a   The texel assignment bitvector for the block.
266  * @param b   The texel assignment bitvector for the partition table.
267  *
268  * @return    The number of bit mismatches.
269  */
partition_mismatch3(const uint64_t a[3],const uint64_t b[3])270 static inline unsigned int partition_mismatch3(
271 	const uint64_t a[3],
272 	const uint64_t b[3]
273 ) {
274 	int p00 = popcount(a[0] ^ b[0]);
275 	int p01 = popcount(a[0] ^ b[1]);
276 	int p02 = popcount(a[0] ^ b[2]);
277 
278 	int p10 = popcount(a[1] ^ b[0]);
279 	int p11 = popcount(a[1] ^ b[1]);
280 	int p12 = popcount(a[1] ^ b[2]);
281 
282 	int p20 = popcount(a[2] ^ b[0]);
283 	int p21 = popcount(a[2] ^ b[1]);
284 	int p22 = popcount(a[2] ^ b[2]);
285 
286 	int s0 = p11 + p22;
287 	int s1 = p12 + p21;
288 	int v0 = astc::min(s0, s1) + p00;
289 
290 	int s2 = p10 + p22;
291 	int s3 = p12 + p20;
292 	int v1 = astc::min(s2, s3) + p01;
293 
294 	int s4 = p10 + p21;
295 	int s5 = p11 + p20;
296 	int v2 = astc::min(s4, s5) + p02;
297 
298 	return astc::min(v0, v1, v2);
299 }
300 
301 /**
302  * @brief Compute bit-mismatch for partitioning in 4-partition mode.
303  *
304  * @param a   The texel assignment bitvector for the block.
305  * @param b   The texel assignment bitvector for the partition table.
306  *
307  * @return    The number of bit mismatches.
308  */
partition_mismatch4(const uint64_t a[4],const uint64_t b[4])309 static inline unsigned int partition_mismatch4(
310 	const uint64_t a[4],
311 	const uint64_t b[4]
312 ) {
313 	int p00 = popcount(a[0] ^ b[0]);
314 	int p01 = popcount(a[0] ^ b[1]);
315 	int p02 = popcount(a[0] ^ b[2]);
316 	int p03 = popcount(a[0] ^ b[3]);
317 
318 	int p10 = popcount(a[1] ^ b[0]);
319 	int p11 = popcount(a[1] ^ b[1]);
320 	int p12 = popcount(a[1] ^ b[2]);
321 	int p13 = popcount(a[1] ^ b[3]);
322 
323 	int p20 = popcount(a[2] ^ b[0]);
324 	int p21 = popcount(a[2] ^ b[1]);
325 	int p22 = popcount(a[2] ^ b[2]);
326 	int p23 = popcount(a[2] ^ b[3]);
327 
328 	int p30 = popcount(a[3] ^ b[0]);
329 	int p31 = popcount(a[3] ^ b[1]);
330 	int p32 = popcount(a[3] ^ b[2]);
331 	int p33 = popcount(a[3] ^ b[3]);
332 
333 	int mx23 = astc::min(p22 + p33, p23 + p32);
334 	int mx13 = astc::min(p21 + p33, p23 + p31);
335 	int mx12 = astc::min(p21 + p32, p22 + p31);
336 	int mx03 = astc::min(p20 + p33, p23 + p30);
337 	int mx02 = astc::min(p20 + p32, p22 + p30);
338 	int mx01 = astc::min(p21 + p30, p20 + p31);
339 
340 	int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
341 	int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
342 	int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
343 	int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
344 
345 	return astc::min(v0, v1, v2, v3);
346 }
347 
348 using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
349 
350 /**
351  * @brief Count the partition table mismatches vs the data clustering.
352  *
353  * @param      bsd               The block size information.
354  * @param      partition_count   The number of partitions in the block.
355  * @param      bitmaps           The block texel partition assignment patterns.
356  * @param[out] mismatch_counts   The array storing per partitioning mismatch counts.
357  */
count_partition_mismatch_bits(const block_size_descriptor & bsd,unsigned int partition_count,const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS])358 static void count_partition_mismatch_bits(
359 	const block_size_descriptor& bsd,
360 	unsigned int partition_count,
361 	const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
362 	unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS]
363 ) {
364 	unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
365 
366 	if (partition_count == 2)
367 	{
368 		for (unsigned int i = 0; i < active_count; i++)
369 		{
370 			mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
371 		}
372 	}
373 	else if (partition_count == 3)
374 	{
375 		for (unsigned int i = 0; i < active_count; i++)
376 		{
377 			mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
378 		}
379 	}
380 	else
381 	{
382 		for (unsigned int i = 0; i < active_count; i++)
383 		{
384 			mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
385 		}
386 	}
387 }
388 
389 /**
390  * @brief Use counting sort on the mismatch array to sort partition candidates.
391  *
392  * @param      partitioning_count   The number of packed partitionings.
393  * @param      mismatch_count       Partitioning mismatch counts, in index order.
394  * @param[out] partition_ordering   Partition index values, in mismatch order.
395  *
396  * @return The number of active partitions in this selection.
397  */
get_partition_ordering_by_mismatch_bits(unsigned int partitioning_count,const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS],unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS])398 static unsigned int get_partition_ordering_by_mismatch_bits(
399 	unsigned int partitioning_count,
400 	const unsigned int mismatch_count[BLOCK_MAX_PARTITIONINGS],
401 	unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS]
402 ) {
403 	unsigned int mscount[256] { 0 };
404 
405 	// Create the histogram of mismatch counts
406 	for (unsigned int i = 0; i < partitioning_count; i++)
407 	{
408 		mscount[mismatch_count[i]]++;
409 	}
410 
411 	unsigned int active_count = partitioning_count - mscount[255];
412 
413 	// Create a running sum from the histogram array
414 	// Cells store previous values only; i.e. exclude self after sum
415 	unsigned int summa = 0;
416 	for (unsigned int i = 0; i < 256; i++)
417 	{
418 		unsigned int cnt = mscount[i];
419 		mscount[i] = summa;
420 		summa += cnt;
421 	}
422 
423 	// Use the running sum as the index, incrementing after read to allow
424 	// sequential entries with the same count
425 	for (unsigned int i = 0; i < partitioning_count; i++)
426 	{
427 		unsigned int idx = mscount[mismatch_count[i]]++;
428 		partition_ordering[idx] = i;
429 	}
430 
431 	return active_count;
432 }
433 
434 /**
435  * @brief Use k-means clustering to compute a partition ordering for a block..
436  *
437  * @param      bsd                  The block size information.
438  * @param      blk                  The image block color data to compress.
439  * @param      partition_count      The desired number of partitions in the block.
440  * @param[out] partition_ordering   The list of recommended partition indices, in priority order.
441  *
442  * @return The number of active partitionings in this selection.
443  */
compute_kmeans_partition_ordering(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS])444 static unsigned int compute_kmeans_partition_ordering(
445 	const block_size_descriptor& bsd,
446 	const image_block& blk,
447 	unsigned int partition_count,
448 	unsigned int partition_ordering[BLOCK_MAX_PARTITIONINGS]
449 ) {
450 	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
451 	uint8_t texel_partitions[BLOCK_MAX_TEXELS];
452 
453 	// Use three passes of k-means clustering to partition the block data
454 	for (unsigned int i = 0; i < 3; i++)
455 	{
456 		if (i == 0)
457 		{
458 			kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
459 		}
460 		else
461 		{
462 			kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
463 		}
464 
465 		kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
466 	}
467 
468 	// Construct the block bitmaps of texel assignments to each partition
469 	uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
470 	unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
471 	promise(texels_to_process > 0);
472 	for (unsigned int i = 0; i < texels_to_process; i++)
473 	{
474 		unsigned int idx = bsd.kmeans_texels[i];
475 		bitmaps[texel_partitions[idx]] |= 1ULL << i;
476 	}
477 
478 	// Count the mismatch between the block and the format's partition tables
479 	unsigned int mismatch_counts[BLOCK_MAX_PARTITIONINGS];
480 	count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
481 
482 	// Sort the partitions based on the number of mismatched bits
483 	return get_partition_ordering_by_mismatch_bits(
484 	    bsd.partitioning_count_selected[partition_count - 1],
485 	    mismatch_counts, partition_ordering);
486 }
487 
488 /**
489  * @brief Insert a partitioning into an order list of results, sorted by error.
490  *
491  * @param      max_values      The max number of entries in the best result arrays/
492  * @param      this_error      The error of the new entry.
493  * @param      this_partition  The partition ID of the new entry.
494  * @param[out] best_errors     The array of best error values.
495  * @param[out] best_partitions The array of best partition values.
496  */
insert_result(unsigned int max_values,float this_error,unsigned int this_partition,float * best_errors,unsigned int * best_partitions)497 static void insert_result(
498 	unsigned int max_values,
499 	float this_error,
500 	unsigned int this_partition,
501 	float* best_errors,
502 	unsigned int* best_partitions)
503 {
504 	// Don't bother searching if the current worst error beats the new error
505 	if (this_error >= best_errors[max_values - 1])
506 	{
507 		return;
508 	}
509 
510 	// Else insert into the list in error-order
511 	for (unsigned int i = 0; i < max_values;  i++)
512 	{
513 		// Existing result is better - move on ...
514 		if (this_error > best_errors[i])
515 		{
516 			continue;
517 		}
518 
519 		// Move existing results down one
520 		for (unsigned int j = max_values - 1; j > i; j--)
521 		{
522 			best_errors[j] = best_errors[j - 1];
523 			best_partitions[j] = best_partitions[j - 1];
524 		}
525 
526 		// Insert new result
527 		best_errors[i] = this_error;
528 		best_partitions[i] = this_partition;
529 		break;
530 	}
531 }
532 
533 /* See header for documentation. */
find_best_partition_candidates(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_search_limit,unsigned int best_partitions[BLOCK_MAX_PARTITIONINGS],unsigned int requested_candidates)534 unsigned int find_best_partition_candidates(
535 	const block_size_descriptor& bsd,
536 	const image_block& blk,
537 	unsigned int partition_count,
538 	unsigned int partition_search_limit,
539 	unsigned int best_partitions[BLOCK_MAX_PARTITIONINGS],
540 	unsigned int requested_candidates
541 ) {
542 	// Constant used to estimate quantization error for a given partitioning; the optimal value for
543 	// this depends on bitrate. These values have been determined empirically.
544 	unsigned int texels_per_block = bsd.texel_count;
545 	float weight_imprecision_estim = 0.055f;
546 	if (texels_per_block <= 20)
547 	{
548 		weight_imprecision_estim = 0.03f;
549 	}
550 	else if (texels_per_block <= 31)
551 	{
552 		weight_imprecision_estim = 0.04f;
553 	}
554 	else if (texels_per_block <= 41)
555 	{
556 		weight_imprecision_estim = 0.05f;
557 	}
558 
559 	promise(partition_count > 0);
560 	promise(partition_search_limit > 0);
561 
562 	weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
563 
564 	unsigned int partition_sequence[BLOCK_MAX_PARTITIONINGS];
565 	unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
566 	partition_search_limit = astc::min(partition_search_limit, sequence_len);
567 	requested_candidates = astc::min(partition_search_limit, requested_candidates);
568 
569 	bool uses_alpha = !blk.is_constant_channel(3);
570 
571 	// Partitioning errors assuming uncorrelated-chrominance endpoints
572 	float uncor_best_errors[TUNE_MAX_PARTITIIONING_CANDIDATES];
573 	unsigned int uncor_best_partitions[TUNE_MAX_PARTITIIONING_CANDIDATES];
574 
575 	// Partitioning errors assuming same-chrominance endpoints
576 	float samec_best_errors[TUNE_MAX_PARTITIIONING_CANDIDATES];
577 	unsigned int samec_best_partitions[TUNE_MAX_PARTITIIONING_CANDIDATES];
578 
579 	for (unsigned int i = 0; i < requested_candidates; i++)
580 	{
581 		uncor_best_errors[i] = ERROR_CALC_DEFAULT;
582 		samec_best_errors[i] = ERROR_CALC_DEFAULT;
583 	}
584 
585 	if (uses_alpha)
586 	{
587 		for (unsigned int i = 0; i < partition_search_limit; i++)
588 		{
589 			unsigned int partition = partition_sequence[i];
590 			const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
591 
592 			// Compute weighting to give to each component in each partition
593 			partition_metrics pms[BLOCK_MAX_PARTITIONS];
594 
595 			compute_avgs_and_dirs_4_comp(pi, blk, pms);
596 
597 			line4 uncor_lines[BLOCK_MAX_PARTITIONS];
598 			line4 samec_lines[BLOCK_MAX_PARTITIONS];
599 
600 			processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
601 			processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
602 
603 			float uncor_line_lens[BLOCK_MAX_PARTITIONS];
604 			float samec_line_lens[BLOCK_MAX_PARTITIONS];
605 
606 			for (unsigned int j = 0; j < partition_count; j++)
607 			{
608 				partition_metrics& pm = pms[j];
609 
610 				uncor_lines[j].a = pm.avg;
611 				uncor_lines[j].b = normalize_safe(pm.dir, unit4());
612 
613 				uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
614 				uncor_plines[j].bs = uncor_lines[j].b;
615 
616 				samec_lines[j].a = vfloat4::zero();
617 				samec_lines[j].b = normalize_safe(pm.avg, unit4());
618 
619 				samec_plines[j].amod = vfloat4::zero();
620 				samec_plines[j].bs = samec_lines[j].b;
621 			}
622 
623 			float uncor_error = 0.0f;
624 			float samec_error = 0.0f;
625 
626 			compute_error_squared_rgba(pi,
627 			                           blk,
628 			                           uncor_plines,
629 			                           samec_plines,
630 			                           uncor_line_lens,
631 			                           samec_line_lens,
632 			                           uncor_error,
633 			                           samec_error);
634 
635 			// Compute an estimate of error introduced by weight quantization imprecision.
636 			// This error is computed as follows, for each partition
637 			//     1: compute the principal-axis vector (full length) in error-space
638 			//     2: convert the principal-axis vector to regular RGB-space
639 			//     3: scale the vector by a constant that estimates average quantization error
640 			//     4: for each texel, square the vector, then do a dot-product with the texel's
641 			//        error weight; sum up the results across all texels.
642 			//     4(optimized): square the vector once, then do a dot-product with the average
643 			//        texel error, then multiply by the number of texels.
644 
645 			for (unsigned int j = 0; j < partition_count; j++)
646 			{
647 				float tpp = static_cast<float>(pi.partition_texel_count[j]);
648 				vfloat4 error_weights(tpp * weight_imprecision_estim);
649 
650 				vfloat4 uncor_vector = uncor_lines[j].b * uncor_line_lens[j];
651 				vfloat4 samec_vector = samec_lines[j].b * samec_line_lens[j];
652 
653 				uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
654 				samec_error += dot_s(samec_vector * samec_vector, error_weights);
655 			}
656 
657 			insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
658 			insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
659 		}
660 	}
661 	else
662 	{
663 		for (unsigned int i = 0; i < partition_search_limit; i++)
664 		{
665 			unsigned int partition = partition_sequence[i];
666 			const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
667 
668 			// Compute weighting to give to each component in each partition
669 			partition_metrics pms[BLOCK_MAX_PARTITIONS];
670 			compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
671 
672 			partition_lines3 plines[BLOCK_MAX_PARTITIONS];
673 
674 			for (unsigned int j = 0; j < partition_count; j++)
675 			{
676 				partition_metrics& pm = pms[j];
677 				partition_lines3& pl = plines[j];
678 
679 				pl.uncor_line.a = pm.avg;
680 				pl.uncor_line.b = normalize_safe(pm.dir, unit3());
681 
682 				pl.samec_line.a = vfloat4::zero();
683 				pl.samec_line.b = normalize_safe(pm.avg, unit3());
684 
685 				pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
686 				pl.uncor_pline.bs   = pl.uncor_line.b;
687 
688 				pl.samec_pline.amod = vfloat4::zero();
689 				pl.samec_pline.bs   = pl.samec_line.b;
690 			}
691 
692 			float uncor_error = 0.0f;
693 			float samec_error = 0.0f;
694 
695 			compute_error_squared_rgb(pi,
696 			                          blk,
697 			                          plines,
698 			                          uncor_error,
699 			                          samec_error);
700 
701 			// Compute an estimate of error introduced by weight quantization imprecision.
702 			// This error is computed as follows, for each partition
703 			//     1: compute the principal-axis vector (full length) in error-space
704 			//     2: convert the principal-axis vector to regular RGB-space
705 			//     3: scale the vector by a constant that estimates average quantization error
706 			//     4: for each texel, square the vector, then do a dot-product with the texel's
707 			//        error weight; sum up the results across all texels.
708 			//     4(optimized): square the vector once, then do a dot-product with the average
709 			//        texel error, then multiply by the number of texels.
710 
711 			for (unsigned int j = 0; j < partition_count; j++)
712 			{
713 				partition_lines3& pl = plines[j];
714 
715 				float tpp = static_cast<float>(pi.partition_texel_count[j]);
716 				vfloat4 error_weights(tpp * weight_imprecision_estim);
717 
718 				vfloat4 uncor_vector = pl.uncor_line.b * pl.uncor_line_len;
719 				vfloat4 samec_vector = pl.samec_line.b * pl.samec_line_len;
720 
721 				uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
722 				samec_error += dot3_s(samec_vector * samec_vector, error_weights);
723 			}
724 
725 			insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
726 			insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
727 		}
728 	}
729 
730 	bool best_is_uncor = uncor_best_partitions[0] > samec_best_partitions[0];
731 
732 	unsigned int interleave[2 * TUNE_MAX_PARTITIIONING_CANDIDATES];
733 	for (unsigned int i = 0; i < requested_candidates; i++)
734 	{
735 		if (best_is_uncor)
736 		{
737 			interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
738 			interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
739 		}
740 		else
741 		{
742 			interleave[2 * i] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
743 			interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
744 		}
745 	}
746 
747 	uint64_t bitmasks[1024/64] { 0 };
748 	unsigned int emitted = 0;
749 
750 	// Deduplicate the first "requested" entries
751 	for (unsigned int i = 0; i < requested_candidates * 2;  i++)
752 	{
753 		unsigned int partition = interleave[i];
754 
755 		unsigned int word = partition / 64;
756 		unsigned int bit = partition % 64;
757 
758 		bool written = bitmasks[word] & (1ull << bit);
759 
760 		if (!written)
761 		{
762 			best_partitions[emitted] = partition;
763 			bitmasks[word] |= 1ull << bit;
764 			emitted++;
765 
766 			if (emitted == requested_candidates)
767 			{
768 				break;
769 			}
770 		}
771 	}
772 
773 	return emitted;
774 }
775 
776 #endif
777