Home
last modified time | relevance | path

Searched refs:Int32Scalar (Results 1 – 25 of 373) sorted by relevance

12345678910>>...15

/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/
Dmobilenet_224_gender_basic_fixed.mod.py4 i87 = Int32Scalar("b87", 1)
5 i88 = Int32Scalar("b88", 2)
6 i89 = Int32Scalar("b89", 2)
7 i90 = Int32Scalar("b90", 3)
8 i91 = Int32Scalar("b91", 1)
9 i92 = Int32Scalar("b92", 1)
10 i93 = Int32Scalar("b93", 1)
11 i94 = Int32Scalar("b94", 1)
12 i95 = Int32Scalar("b95", 3)
13 i96 = Int32Scalar("b96", 1)
[all …]
Dmobilenet_quantized.mod.py4 i104 = Int32Scalar("b104", 1)
5 i105 = Int32Scalar("b105", 2)
6 i106 = Int32Scalar("b106", 2)
7 i107 = Int32Scalar("b107", 0)
8 i108 = Int32Scalar("b108", 1)
9 i109 = Int32Scalar("b109", 1)
10 i110 = Int32Scalar("b110", 1)
11 i111 = Int32Scalar("b111", 1)
12 i112 = Int32Scalar("b112", 0)
13 i113 = Int32Scalar("b113", 1)
[all …]
Dl2_pool_float_large.mod.py19 filter_width = Int32Scalar("filter_width", 2)
20 filter_height = Int32Scalar("filter_height", 2)
21 stride_width = Int32Scalar("stride_width", 1)
22 stride_height = Int32Scalar("stride_height", 1)
23 pad0 = Int32Scalar("pad0", 0)
24 act = Int32Scalar("act", 0)
Ddepthwise_conv.mod.py2 i4 = Int32Scalar("b4", 1)
3 i5 = Int32Scalar("b5", 1)
4 i6 = Int32Scalar("b6", 1)
5 i7 = Int32Scalar("b7", 1)
6 i8 = Int32Scalar("b8", 0)
Dconv_quant8_2.mod.py21 pad_valid = Int32Scalar("pad_valid", 2)
22 act_none = Int32Scalar("act_none", 0)
23 stride1 = Int32Scalar("stride1", 1)
24 stride3 = Int32Scalar("stride3", 3)
Ddepthwise_conv2d_float_2.mod.py21 pad_valid = Int32Scalar("pad_valid", 2)
22 act_none = Int32Scalar("act_none", 0)
23 stride = Int32Scalar("stride", 1)
24 cm = Int32Scalar("channelMultiplier", 2)
Ddepthwise_conv2d_quant8_2.mod.py21 pad_valid = Int32Scalar("pad_valid", 2)
22 act_none = Int32Scalar("act_none", 0)
23 stride = Int32Scalar("stride", 1)
24 cm = Int32Scalar("channelMultiplier", 2)
Ddepthwise_conv2d_float_large.mod.py21 pad0 = Int32Scalar("pad0", 0)
22 act = Int32Scalar("act", 0)
23 stride = Int32Scalar("stride", 1)
24 cm = Int32Scalar("channelMultiplier", 1)
Ddepthwise_conv2d_quant8_large.mod.py21 pad0 = Int32Scalar("pad0", 0)
22 act = Int32Scalar("act", 0)
23 stride = Int32Scalar("stride", 1)
24 cm = Int32Scalar("channelMultiplier", 1)
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/
Dmobilenet_224_gender_basic_fixed_relaxed.mod.py20 i87 = Int32Scalar("b87", 1)
21 i88 = Int32Scalar("b88", 2)
22 i89 = Int32Scalar("b89", 2)
23 i90 = Int32Scalar("b90", 3)
24 i91 = Int32Scalar("b91", 1)
25 i92 = Int32Scalar("b92", 1)
26 i93 = Int32Scalar("b93", 1)
27 i94 = Int32Scalar("b94", 1)
28 i95 = Int32Scalar("b95", 3)
29 i96 = Int32Scalar("b96", 1)
[all …]
Dl2_pool_float_large_relaxed.mod.py19 filter_width = Int32Scalar("filter_width", 2)
20 filter_height = Int32Scalar("filter_height", 2)
21 stride_width = Int32Scalar("stride_width", 1)
22 stride_height = Int32Scalar("stride_height", 1)
23 pad0 = Int32Scalar("pad0", 0)
24 act = Int32Scalar("act", 0)
Ddepthwise_conv_relaxed.mod.py18 i4 = Int32Scalar("b4", 1)
19 i5 = Int32Scalar("b5", 1)
20 i6 = Int32Scalar("b6", 1)
21 i7 = Int32Scalar("b7", 1)
22 i8 = Int32Scalar("b8", 0)
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/
Dstrided_slice_quant8_signed.mod.py22 beginMask = Int32Scalar("beginMask", 0)
23 endMask = Int32Scalar("endMask", 2)
24 shrinkAxisMask = Int32Scalar("shrinkAxisMask", 0)
47 beginMask = Int32Scalar("beginMask", 0)
48 endMask = Int32Scalar("endMask", 0)
49 shrinkAxisMask = Int32Scalar("shrinkAxisMask", 1)
72 beginMask = Int32Scalar("beginMask", 0)
73 endMask = Int32Scalar("endMask", 0)
74 shrinkAxisMask = Int32Scalar("shrinkAxisMask", 0)
97 beginMask = Int32Scalar("beginMask", 0)
[all …]
Dresize_nearest_neighbor_v1_3.mod.py40 output_width=Int32Scalar("output_width", 2),
41 output_height=Int32Scalar("output_height", 2),
53 output_width=Int32Scalar("output_width", 1),
54 output_height=Int32Scalar("output_height", 1),
66 output_width=Int32Scalar("output_width", 3),
67 output_height=Int32Scalar("output_height", 3),
79 output_width=Int32Scalar("output_width", 5),
80 output_height=Int32Scalar("output_height", 2),
92 output_width=Int32Scalar("output_width", 3),
93 output_height=Int32Scalar("output_height", 3),
[all …]
Dresize_bilinear_v1_3.mod.py53 output_width=Int32Scalar("output_width", 3),
54 output_height=Int32Scalar("output_height", 3),
68 output_width=Int32Scalar("output_width", 7),
69 output_height=Int32Scalar("output_height", 6),
277 output_width=Int32Scalar("output_width", 13),
278 output_height=Int32Scalar("output_height", 14),
485 output_width=Int32Scalar("output_width", 1),
486 output_height=Int32Scalar("output_height", 1),
498 output_width=Int32Scalar("output_width", 3),
499 output_height=Int32Scalar("output_height", 3),
[all …]
Ddepthwise_conv2d_quant8_signed.mod.py222 pad_valid = Int32Scalar("pad_valid", 2)
223 act_none = Int32Scalar("act_none", 0)
224 stride = Int32Scalar("stride", 1)
225 cm = Int32Scalar("channelMultiplier", 2)
254 pad0 = Int32Scalar("pad0", 0)
255 act = Int32Scalar("act", 0)
256 stride = Int32Scalar("stride", 1)
257 cm = Int32Scalar("channelMultiplier", 1)
282 pad0 = Int32Scalar("pad0", 0)
283 act = Int32Scalar("act", 0)
[all …]
Dconv2d_quant8_signed.mod.py440 pad_valid = Int32Scalar("pad_valid", 2)
441 act_none = Int32Scalar("act_none", 0)
442 stride1 = Int32Scalar("stride1", 1)
443 stride3 = Int32Scalar("stride3", 3)
470 pad0 = Int32Scalar("pad0", 0)
471 act = Int32Scalar("act", 0)
472 stride = Int32Scalar("stride", 1)
491 pad0 = Int32Scalar("pad0", 0)
492 act = Int32Scalar("act", 0)
493 stride = Int32Scalar("stride", 1)
[all …]
Dsplit_quant8_signed.mod.py18 axis = Int32Scalar("axis", 0)
19 num_splits = Int32Scalar("num_splits", 3)
41 axis = Int32Scalar("axis", 0)
42 num_splits = Int32Scalar("num_splits", 2)
62 axis = Int32Scalar("axis", 1)
63 num_splits = Int32Scalar("num_splits", 3)
85 axis = Int32Scalar("axis", 1)
86 num_splits = Int32Scalar("num_splits", 2)
Davg_pool_quant8_signed.mod.py19 cons1 = Int32Scalar("cons1", 1)
20 pad0 = Int32Scalar("pad0", 0)
21 act = Int32Scalar("act", 0)
50 stride = Int32Scalar("stride", std)
51 filt = Int32Scalar("filter", flt)
52 padding = Int32Scalar("padding", pad)
53 act0 = Int32Scalar("activation", 0)
87 stride = Int32Scalar("stride", std)
88 filt = Int32Scalar("filter", flt)
89 padding = Int32Scalar("padding", pad)
[all …]
Dmax_pool_quant8_signed.mod.py19 cons1 = Int32Scalar("cons1", 1)
20 pad0 = Int32Scalar("pad0", 0)
21 act = Int32Scalar("act", 0)
47 stride = Int32Scalar("stride", std)
48 filt = Int32Scalar("filter", flt)
49 padding = Int32Scalar("padding", pad)
50 act0 = Int32Scalar("activation", 0)
86 stride = Int32Scalar("stride", std)
87 filt = Int32Scalar("filter", flt)
88 padding = Int32Scalar("padding", pad)
[all …]
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dtopk_v2.mod.py27 k=Int32Scalar("k", 2),
35 k=Int32Scalar("k", 2),
43 k=Int32Scalar("k", 2),
51 k=Int32Scalar("k", 2),
59 k=Int32Scalar("k", 2),
67 k=Int32Scalar("k", 2),
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_variation/
Dconv_float.mod.py20 act = Int32Scalar("act", 0) # None activation
21 layout = Int32Scalar("layout", 0) # NHWC
22 pad = Int32Scalar("param", 1)
23 stride0 = Int32Scalar("param1", 1)
24 stride1 = Int32Scalar("param2", 1)
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_vts_variation/
Dconv_float.mod.py20 act = Int32Scalar("act", 0) # None activation
21 layout = Int32Scalar("layout", 0) # NHWC
22 pad = Int32Scalar("param", 1)
23 stride0 = Int32Scalar("param1", 1)
24 stride1 = Int32Scalar("param2", 1)
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_naming/
Dconv_float.mod.py20 act = Int32Scalar("act", 0) # None activation
21 layout = Int32Scalar("layout", 0) # NHWC
22 pad = Int32Scalar("param", 1)
23 stride0 = Int32Scalar("param1", 1)
24 stride1 = Int32Scalar("param2", 1)
/packages/modules/NeuralNetworks/tools/test_generator/tests/P_vts_naming/
Dconv_float.mod.py20 act = Int32Scalar("act", 0) # None activation
21 layout = Int32Scalar("layout", 0) # NHWC
22 pad = Int32Scalar("param", 1)
23 stride0 = Int32Scalar("param1", 1)
24 stride1 = Int32Scalar("param2", 1)

12345678910>>...15