/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | unidirectional_sequence_rnn.mod.py | 50 num_units = 16 variable 182 "{{{}, {}}}".format(num_units, input_size)), 184 "{{{}, {}}}".format(num_units, num_units)), 185 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)), 187 "{{{}, {}}}".format(num_batches, num_units)), 189 "{{{}, {}, {}}}".format(num_batches, max_time, num_units)), 191 "{{{}, {}}}".format(num_batches, num_units)), 198 hidden_state_data=[0] * num_batches * num_units, 208 "{{{}, {}}}".format(num_units, input_size)), 210 "{{{}, {}}}".format(num_units, num_units)), [all …]
|
D | qlstm_projection.mod.py | 24 num_units = 4 variable 30 InputWeightsType = ("TENSOR_QUANT8_SYMM", [num_units, input_size], 0.00784314, 0) 36 RecurrentWeightsType = ("TENSOR_QUANT8_SYMM", [num_units, output_size], 0.00784314, 0) 42 CellWeightsType = ("TENSOR_QUANT16_SYMM", [num_units], 1.0, 0) 48 BiasType = ("TENSOR_INT32", [num_units], 0.0, 0) 55 ("TENSOR_QUANT8_SYMM", [output_size, num_units], 0.00392157, 0)) 59 CellStateType = ("TENSOR_QUANT16_SYMM", [batch_size, num_units], 3.05176e-05, 0) 63 LayerNormType = ("TENSOR_QUANT16_SYMM", [num_units], 3.05182e-05, 0) 135 cell_state_in: [ 0 for _ in range(batch_size * num_units) ], 192 cell_state_in: [ 0 for _ in range(batch_size * num_units) ],
|
D | qlstm_noprojection.mod.py | 24 num_units = 4 variable 30 InputWeightsType = ("TENSOR_QUANT8_SYMM", [num_units, input_size], 0.00784314, 0) 36 RecurrentWeightsType = ("TENSOR_QUANT8_SYMM", [num_units, output_size], 0.00784314, 0) 42 CellWeightsType = ("TENSOR_QUANT16_SYMM", [num_units], 1.0, 0) 48 BiasType = ("TENSOR_INT32", [num_units], 0.0, 0) 55 ("TENSOR_QUANT8_SYMM", [output_size, num_units], 0.00392157, 0)) 59 CellStateType = ("TENSOR_QUANT16_SYMM", [batch_size, num_units], 3.05176e-05, 0) 63 LayerNormType = ("TENSOR_QUANT16_SYMM", [num_units], 3.05182e-05, 0) 129 cell_state_in: [ 0 for _ in range(batch_size * num_units) ],
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | unidirectional_sequence_rnn.mod.py | 47 num_units = 16 variable 144 num_units, input_size)), 146 "{{{}, {}}}".format(num_units, num_units)), 147 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)), 149 num_batches, num_units)), 151 num_batches, max_time, num_units)), 158 hidden_state_data=[0] * num_batches * num_units, 166 num_units, input_size)), 168 "{{{}, {}}}".format(num_units, num_units)), 169 bias=Input("bias", "TENSOR_FLOAT32", "{{{}}}".format(num_units)), [all …]
|
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | RNN.cpp | 62 const uint32_t num_units = SizeOfDimension(input_weights, 0); in Prepare() local 72 hiddenStateShape->dimensions = {batch_size, num_units}; in Prepare() 76 outputShape->dimensions = {batch_size, num_units}; in Prepare() 146 const uint32_t num_units = weightsShape.dimensions[0]; in RNNStep() local 163 const T* hidden_state_in_ptr_batch = hiddenStateInputData + b * num_units; in RNNStep() 179 for (uint32_t o = 0; o < num_units; o++) { in RNNStep() 184 for (uint32_t o = 0; o < num_units; o++) { in RNNStep() 193 for (uint32_t o = 0; o < num_units; o++) { in RNNStep() 202 for (uint32_t o = 0; o < num_units; o++) { in RNNStep() 203 for (uint32_t h = 0; h < num_units; h++) { in RNNStep() [all …]
|
D | SVDF.cpp | 86 const uint32_t num_units = num_filters / rank; in Prepare() local 93 NN_CHECK_EQ(SizeOfDimension(bias, 0), num_units); in Prepare() 105 outputShape->dimensions = {batch_size, num_units}; in Prepare() 173 const int num_units = num_filters / rank; in EvalFloat32() local 208 tflite::tensor_utils::ReductionSumVector(scratch, outputData, batch_size * num_units, rank); in EvalFloat32() 212 tflite::tensor_utils::VectorBatchVectorAdd(biasData, num_units, batch_size, outputData); in EvalFloat32() 217 outputData, batch_size * num_units, in EvalFloat32()
|
D | RNNTest.cpp | 189 uint32_t num_units() const { return units_; } in num_units() function in android::nn::wrapper::BasicRNNOpModel 294 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 295 float* golden_end = golden_start + rnn.num_units(); in TEST()
|
D | SVDFTest.cpp | 296 int num_units() const { return units_; } in num_units() function in android::nn::wrapper::SVDFOpModel 340 const int svdf_num_units = svdf.num_units(); in TEST() 399 const int svdf_num_units = svdf.num_units(); in TEST()
|
/packages/modules/NeuralNetworks/common/types/operations/src/ |
D | FullyConnected.cpp | 43 uint32_t num_units = getSizeOfDimension(weights, 0u); in validateShapes() local 51 if (num_units != 0 && bias_len != 0) { in validateShapes() 52 NN_RET_CHECK_EQ(bias_len, num_units); in validateShapes() 56 NN_RET_CHECK_GT(num_units, 0u); in validateShapes() 59 output->dimensions = {batch_size, num_units}; in validateShapes()
|
/packages/modules/NeuralNetworks/tools/api/ |
D | types.spec | 1170 * [num_units, input_size], where "num_units" corresponds to the number 1172 * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input 1188 * * 0: The output tensor, of shape [batch_size, num_units]. %{BeforeNNAPILevel3For} 1705 * A 2-D tensor of shape [num_units, input_size], where “num_units” 1708 * A 2-D tensor of shape [num_units, input_size]. 1710 * A 2-D tensor of shape [num_units, input_size]. 1712 * A 2-D tensor of shape [num_units, input_size]. 1714 * A 2-D tensor of shape [num_units, output_size], where “output_size” 1715 * corresponds to either the number of cell units (i.e., “num_units”), 1718 * A 2-D tensor of shape [num_units, output_size]. [all …]
|