Home
last modified time | relevance | path

Searched refs:recurrent_weights (Results 1 – 9 of 9) sorted by relevance

/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dunidirectional_sequence_rnn.mod.py19 def test(name, input, weights, recurrent_weights, bias, hidden_state, argument
25 recurrent_weights, bias, hidden_state, activation,
30 recurrent_weights: recurrent_weights_data,
145 recurrent_weights=Input("recurrent_weights", "TENSOR_FLOAT32",
167 recurrent_weights=Input("recurrent_weights", "TENSOR_FLOAT32",
Drnn_float16.mod.py25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT16", "{%d, %d}" % (units, units)) variable
34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in,
62 recurrent_weights: [
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/
Dunidirectional_sequence_rnn.mod.py19 def test(name, input, weights, recurrent_weights, bias, hidden_state, argument
26 recurrent_weights, bias, hidden_state, activation,
32 recurrent_weights: recurrent_weights_data,
183 recurrent_weights=Input("recurrent_weights", "TENSOR_FLOAT32",
209 recurrent_weights=Input("recurrent_weights", "TENSOR_FLOAT32",
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/
Drnn_state.mod.py25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable
34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in,
62 recurrent_weights: [
Drnn.mod.py25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable
34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in,
62 recurrent_weights: [
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/
Drnn_state_relaxed.mod.py25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable
34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in,
63 recurrent_weights: [
Drnn_relaxed.mod.py25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable
34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in,
63 recurrent_weights: [
/packages/modules/NeuralNetworks/common/cpu_operations/
DRNN.cpp55 const RunTimeOperandInfo* recurrent_weights = in Prepare() local
65 NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 0), SizeOfDimension(bias, 0)); in Prepare()
66 NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 1), SizeOfDimension(bias, 0)); in Prepare()
/packages/modules/NeuralNetworks/tools/api/
Dtypes.spec2228 * state * recurrent_weights + bias)
2232 * * “recurrent_weights” is a weight matrix that multiplies the current
2255 * * 2: recurrent_weights.
6023 * recurrent_weights’ + bias)
6027 * * “recurrent_weights” is a weight matrix that multiplies the current
6048 * * 2: recurrent_weights.