Home
last modified time | relevance | path

Searched refs:state_in (Results 1 – 11 of 11) sorted by relevance

/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dsvdf_state_float16.mod.py28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units)) variable
34 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
63 input0[state_in] = [
Dsvdf_bias_present_float16.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
60 state_in: [0 for _ in range(batches * memory_size * features)],
Dsvdf_float16.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
60 state_in: [0 for _ in range(batches * memory_size * features)],
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/
Dsvdf_state.mod.py28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) variable
34 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
63 input0[state_in] = [
Dsvdf.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
60 state_in: [0 for _ in range(batches * memory_size * features)],
Dsvdf_bias_present.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
60 state_in: [0 for _ in range(batches * memory_size * features)],
Dsvdf2.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
75 state_in: [0 for _ in range(batches * memory_size * features)],
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/
Dsvdf_state_relaxed.mod.py28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) variable
34 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
64 input0[state_in] = [
Dsvdf2_relaxed.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
76 state_in: [0 for _ in range(batches * memory_size * features)],
Dsvdf_relaxed.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
61 state_in: [0 for _ in range(batches * memory_size * features)],
Dsvdf_bias_present_relaxed.mod.py30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) variable
36 model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in,
61 state_in: [0 for _ in range(batches * memory_size * features)],