Searched refs:weightsShape (Results 1 – 5 of 5) sorted by relevance
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | FullyConnected.cpp | 53 const float* weightsData, const Shape& weightsShape, in fullyConnectedFloat32() argument 67 weightsData, convertShapeToDims(weightsShape), in fullyConnectedFloat32() 74 weightsData, convertShapeToDims(weightsShape), in fullyConnectedFloat32() 83 const _Float16* weightsData, const Shape& weightsShape, in fullyConnectedFloat16() argument 89 std::vector<float> weightsDataFloat32(getNumberOfElements(weightsShape)); in fullyConnectedFloat16() 96 weightsShape, biasDataFloat32.data(), biasShape, activation, in fullyConnectedFloat16() 104 const uint8_t* weightsData, const Shape& weightsShape, in fullyConnectedQuant8() argument 109 int32_t weightsOffset = -weightsShape.offset; in fullyConnectedQuant8() 118 NN_RET_CHECK(GetQuantizedConvolutionMultiplier(inputShape, weightsShape, biasShape, outputShape, in fullyConnectedQuant8() 135 weightsData, convertShapeToDims(weightsShape), in fullyConnectedQuant8() [all …]
|
D | RNN.cpp | 117 const T* biasData, const T* weightsData, const Shape& weightsShape, in RNNStep() argument 123 uint32_t numUnits = weightsShape.dimensions[0]; in RNNStep() 125 hiddenStateInputData, biasData, weightsData, weightsShape, in RNNStep() 138 const T* weightsData, const Shape& weightsShape, const T* auxWeightsData, in RNNStep() argument 146 const uint32_t num_units = weightsShape.dimensions[0]; in RNNStep() 148 const uint32_t input_weights_stride = weightsShape.dimensions[1]; in RNNStep() 225 const _Float16* weightsData, const Shape& weightsShape, 232 const _Float16* weightsData, const Shape& weightsShape, 241 const float* weightsData, const Shape& weightsShape, 248 const float* weightsData, const Shape& weightsShape,
|
D | QuantizedLSTM.cpp | 381 Shape weightsShape; in eval() local 382 weightsShape.dimensions = {4 * SizeOfDimension(prevOutput_, 1), in eval() 384 std::vector<uint8_t> weights(getNumberOfElements(weightsShape)); in eval() 385 concatenateWeights(weightsShape.dimensions, weights.data()); in eval() 388 biasShape.dimensions = {getSizeOfDimension(weightsShape, 0)}; in eval() 393 concatTempShape.dimensions = {SizeOfDimension(input_, 0), getSizeOfDimension(weightsShape, 1)}; in eval() 397 getSizeOfDimension(weightsShape, 0)}; in eval() 418 weights.data(), convertShapeToDims(weightsShape), bias.data(), in eval()
|
D | UnidirectionalSequenceRNN.cpp | 57 Shape weightsShape = context->getInputShape(kWeightsTensor); in executeTyped() local 87 const uint32_t numUnits = getSizeOfDimension(weightsShape, 0); in executeTyped() 96 RNN::RNNStep<T>(input, fixedTimeInputShape, hiddenState, bias, weights, weightsShape, in executeTyped()
|
/packages/modules/NeuralNetworks/common/types/operations/include/ |
D | RNN.h | 57 const T* biasData, const T* weightsData, const Shape& weightsShape, 64 const T* biasData, const T* weightsData, const Shape& weightsShape,
|