/packages/modules/NeuralNetworks/common/types/operations/src/ |
D | Softmax.cpp | 46 const auto inputRank = getNumberOfDimensions(context->getInputShape(kInputTensor)); in validate() local 47 if (inputRank != 0) { in validate() 48 NN_RET_CHECK_LE(inputRank, 4u); in validate() 54 if (inputRank != 2 && inputRank != 4 && inputRank != 0) { in validate()
|
D | Concatenation.cpp | 54 const uint32_t inputRank = getNumberOfDimensions(context->getInputShape(i)); in validate() local 55 if (inputRank != 0) { in validate() 56 NN_RET_CHECK_LE(inputRank, 4u); in validate()
|
D | Pack.cpp | 63 if (const size_t inputRank = inputShape.dimensions.size()) { in validate() local 65 NN_RET_CHECK_EQ(requiredInputRank, inputRank) in validate() 68 requiredInputRank = inputRank; in validate()
|
D | Reshape.cpp | 148 const auto inputRank = context->getInputShape(0).dimensions.size(); in validatePad() local 149 NN_RET_CHECK_LE(inputRank, 4u) in validatePad() 195 const auto inputRank = context->getInputShape(0).dimensions.size(); in validatePadV2() local 196 NN_RET_CHECK_LE(inputRank, 4u) in validatePadV2() 340 const auto inputRank = context->getInputShape(0).dimensions.size(); in validateReshape() local 341 NN_RET_CHECK_LE(inputRank, 4u) in validateReshape()
|
D | Conv2D.cpp | 31 const auto inputRank = getNumberOfDimensions(context->getInputShape(kInputTensor)); in validate() local 33 if (inputRank != 0) { in validate() 34 NN_RET_CHECK_EQ(inputRank, 4u); in validate()
|
D | SimpleMath.cpp | 29 const auto inputRank = context->getInputShape(0).dimensions.size(); in validate() local 30 NN_RET_CHECK_LE(inputRank, 4u) in validate()
|
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | Reduce.cpp | 49 const uint32_t inputRank = getNumberOfDimensions(inputShape); in compute() local 55 reinterpret_cast<const int32_t*>(inputShape.dimensions.data()), inputRank, in compute() 67 const uint32_t inputRank = getNumberOfDimensions(inputShape); in prepare() local 68 NN_RET_CHECK_LE(inputRank, 4u); in prepare() 70 std::vector<bool> shouldReduce(inputRank); in prepare() 77 NN_RET_CHECK(handleNegativeAxis(inputRank, &axis)); in prepare() 85 for (uint32_t axis = 0; axis < inputRank; ++axis) { in prepare()
|
D | LSTM.cpp | 429 const uint32_t inputRank = getNumberOfDimensions(input_shape); in LSTMEvalFloat32() local 430 NN_CHECK(inputRank == 2 || inputRank == 3); in LSTMEvalFloat32() 433 (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1; in LSTMEvalFloat32() 434 const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) in LSTMEvalFloat32() 436 const uint32_t inputSize = getSizeOfDimension(input_shape, inputRank - 1); in LSTMEvalFloat32() 549 const uint32_t inputRank = getNumberOfDimensions(input_shape); in LSTMEvalFloat16() local 550 NN_CHECK(inputRank == 2 || inputRank == 3); in LSTMEvalFloat16() 553 (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1; in LSTMEvalFloat16() 554 const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) in LSTMEvalFloat16() 556 const uint32_t inputSize = getSizeOfDimension(input_shape, inputRank - 1); in LSTMEvalFloat16()
|
D | MirrorPad.cpp | 42 const auto inputRank = getNumberOfDimensions(inputShape); in prepare() local 43 NN_RET_CHECK_GT(inputRank, 0U); in prepare() 58 for (uint32_t i = 0; i < inputRank; ++i) { in prepare()
|
D | UnidirectionalSequenceLSTM.cpp | 91 const uint32_t inputRank = getNumberOfDimensions(inputShape); in prepare() local 92 NN_RET_CHECK_EQ(inputRank, 3u) << "Invalid input tensor rank: " << inputRank; in prepare() 97 const uint32_t inputSize = getSizeOfDimension(inputShape, inputRank - 1); in prepare()
|
D | QLSTM.cpp | 64 const uint32_t inputRank = getNumberOfDimensions(inputShape); in prepare() local 65 NN_RET_CHECK_EQ(inputRank, 2u) << "Invalid input tensor rank: " << inputRank; in prepare()
|
/packages/modules/NeuralNetworks/common/ |
D | LegacyUtils.cpp | 766 const auto inputRank = operands[inputIndexes[0]].dimensions.size(); in validateOperation() local 767 if (inputRank > 4) { in validateOperation() 1297 const auto inputRank = operands[inputIndexes[0]].dimensions.size(); in validateOperation() local 1298 if (inputRank > 4) { in validateOperation() 1347 const auto inputRank = operands[inputIndexes[0]].dimensions.size(); in validateOperation() local 1348 if (inputRank > 4) { in validateOperation() 1412 const auto inputRank = operands[inputIndexes[0]].dimensions.size(); in validateOperation() local 1413 if (inputRank > 4) { in validateOperation()
|
/packages/modules/NeuralNetworks/runtime/test/ |
D | TestValidateOperations.cpp | 4725 constexpr size_t inputRank = sizeof(inputDimensions) / sizeof(inputDimensions[0]); in packTest() local 4727 getOpType(operandCode, inputRank, inputDimensions); in packTest() 4729 constexpr uint32_t outputRank = inputRank + 1; in packTest() 4778 constexpr size_t inputRank = sizeof(inputDimensions) / sizeof(inputDimensions[0]); in packTestBadQuantization() local 4780 getOpType(operandCode, inputRank, inputDimensions); in packTestBadQuantization() 4783 constexpr uint32_t outputRank = inputRank + 1; in packTestBadQuantization() 4786 outputDimensions[inputRank] = inputTensorCount; in packTestBadQuantization() 4839 constexpr size_t inputRank = sizeof(inputDimensions) / sizeof(inputDimensions[0]); in packTestBadRank() local 4841 getOpType(operandCode, inputRank, inputDimensions); in packTestBadRank() 4844 constexpr uint32_t outputRank = inputRank + 1; in packTestBadRank()
|