Searched refs:input_dims (Results 1 – 4 of 4) sorted by relevance
/packages/modules/NeuralNetworks/runtime/test/specs/AIDL_V3/ |
D | mirror_pad.mod.py | 30 def test(name, seed, input_dims, orig_paddings, modes=[0, 1], clampReflectPadding=False): argument 37 for i in range(0, len(input_dims)): 40 if paddings[padding_index] == input_dims[i]: 41 paddings[padding_index] = input_dims[i] - 1 43 input_tensor = Input("in", ("TENSOR_FLOAT32", input_dims)) 44 padding_tensor = Parameter("padding", ("TENSOR_INT32", [len(input_dims), 2]), paddings) 45 output_dims = [sum(x) for x in zip(input_dims, paddings[0::2], paddings[1::2])] 49 input_data = [random_value(r) for x in range(0, numpy.prod(input_dims))] 51 numpy_input_data = numpy.reshape(input_data, input_dims)
|
D | mirror_pad_tensorflow.mod.py | 20 def test(name, input_dims, input_values, paddings, mode, output_dims, output_values): argument 21 t = Input("t", ("TENSOR_FLOAT32", input_dims)) 22 paddings = Parameter("paddings", ("TENSOR_INT32", [len(input_dims), 2]), paddings)
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | fill.mod.py | 16 def test(name, input_dims, value, output, input_dims_data, output_data): argument 17 model = Model().Operation("FILL", input_dims, value).To(output) 19 input_dims: input_dims_data, 28 input_dims=Input("input0", "TENSOR_INT32", "{1}"), 37 input_dims=Input("input0", "TENSOR_INT32", "{3}"), 46 input_dims=Input("input0", "TENSOR_INT32", "{5}"),
|
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | QuantizedLSTM.cpp | 59 void quantizedLstmStep(const uint8_t* input_data_uint8, const Dims<4>& input_dims, in quantizedLstmStep() argument 72 MatchingFlatSizeSkipDim(input_dims, 0, prev_activ_dims, prevCellState_dims, in quantizedLstmStep() 76 const int input_depth = ArraySize(input_dims, 0); in quantizedLstmStep() 98 Dims<4> const* concat_input_arrays_dims[2] = {&input_dims, &prev_activ_dims}; in quantizedLstmStep()
|