1 // Copyright (C) 2021 The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <ditto/result.h>
16 #include <ditto/statistics.h>
17 #include <ditto/timespec_utils.h>
18
19 #include <google/protobuf/util/json_util.h>
20
21 #include <algorithm>
22 #include <fstream>
23 #include <iomanip>
24 #include <iostream>
25 #include <set>
26 #include <string>
27
28 const int kSampleDisplayWidth = 16; // this width is used displaying a sample value
29 const int kTableWidth = 164; // table width; can be adjusted in case of longer instruction paths
30 const char* kTableDivider = " | "; // table character divider
31 const int kMaxHistogramHeight = 20; // used for normalizing the histogram (represents the
32 // maximum height of the histogram)
33 const int kMaxHistogramWidth = 50; // used for normalizing the histogram (represents the
34 // maximum width of the histogram)
35 const char kCsvDelimiter = ','; // delimiter used for .csv files
36 static int bin_size; // bin size corresponding to the normalization
37 // of the Oy axis of the histograms
38
39 namespace dittosuite {
40
Result(const std::string & name,const int repeat)41 Result::Result(const std::string& name, const int repeat) : name_(name), repeat_(repeat) {}
42
AddMeasurement(const std::string & name,const std::vector<double> & samples)43 void Result::AddMeasurement(const std::string& name, const std::vector<double>& samples) {
44 samples_[name] = samples;
45 AnalyseMeasurement(name);
46 }
47
AddSubResult(std::unique_ptr<Result> result)48 void Result::AddSubResult(std::unique_ptr<Result> result) {
49 sub_results_.push_back(std::move(result));
50 }
51
GetSamples(const std::string & measurement_name) const52 std::vector<double> Result::GetSamples(const std::string& measurement_name) const {
53 return samples_.find(measurement_name)->second;
54 }
55
GetRepeat() const56 int Result::GetRepeat() const {
57 return repeat_;
58 }
59
60 // analyse the measurement with the given name, and store
61 // the results in the statistics_ map
AnalyseMeasurement(const std::string & name)62 void Result::AnalyseMeasurement(const std::string& name) {
63 statistics_[name].min = StatisticsGetMin(samples_[name]);
64 statistics_[name].max = StatisticsGetMax(samples_[name]);
65 statistics_[name].mean = StatisticsGetMean(samples_[name]);
66 statistics_[name].median = StatisticsGetMedian(samples_[name]);
67 statistics_[name].sd = StatisticsGetSd(samples_[name]);
68 }
69
ComputeNextInstructionPath(const std::string & instruction_path)70 std::string Result::ComputeNextInstructionPath(const std::string& instruction_path) {
71 return instruction_path + (instruction_path != "" ? "/" : "") + name_;
72 }
73
Print(const ResultsOutput results_output,const std::string & instruction_path)74 void Result::Print(const ResultsOutput results_output, const std::string& instruction_path) {
75 switch (results_output) {
76 case ResultsOutput::kReport:
77 PrintHistograms(instruction_path);
78 PrintStatisticsTables();
79 break;
80 case ResultsOutput::kCsv:
81 MakeStatisticsCsv();
82 break;
83 case ResultsOutput::kPb:
84 PrintPb(ToPb());
85 break;
86 case ResultsOutput::kNull:
87 break;
88 }
89 }
90
PrintTableBorder()91 void PrintTableBorder() {
92 std::cout << std::setfill('-') << std::setw(kTableWidth) << "" << std::setfill(' ');
93 std::cout << '\n';
94 }
95
PrintStatisticsTableHeader()96 void PrintStatisticsTableHeader() {
97 std::cout << "\x1b[1m"; // beginning of bold
98 std::cout << '\n';
99 PrintTableBorder();
100 std::cout << "| "; // beginning of table row
101 std::cout << std::setw(70) << std::left << "Instruction name";
102 std::cout << kTableDivider;
103 std::cout << std::setw(15) << std::right << " Min";
104 std::cout << kTableDivider;
105 std::cout << std::setw(15) << " Max";
106 std::cout << kTableDivider;
107 std::cout << std::setw(15) << " Mean";
108 std::cout << kTableDivider;
109 std::cout << std::setw(15) << " Median";
110 std::cout << kTableDivider;
111 std::cout << std::setw(15) << " SD";
112 std::cout << kTableDivider;
113 std::cout << '\n';
114 PrintTableBorder();
115 std::cout << "\x1b[0m"; // ending of bold
116 }
117
PrintMeasurementInTable(const int64_t & measurement,const std::string & measurement_name)118 void PrintMeasurementInTable(const int64_t& measurement, const std::string& measurement_name) {
119 if (measurement_name == "duration") {
120 std::cout << std::setw(13) << measurement << "ns";
121 } else if (measurement_name == "bandwidth") {
122 std::cout << std::setw(11) << measurement << "KB/s";
123 }
124 }
125
126 // Recursive function to print one row at a time
127 // of statistics table content (the instruction path, min, max and mean).
PrintStatisticsTableContent(const std::string & instruction_path,const std::string & measurement_name)128 void Result::PrintStatisticsTableContent(const std::string& instruction_path,
129 const std::string& measurement_name) {
130 std::string next_instruction_path = ComputeNextInstructionPath(instruction_path);
131 int subinstruction_level =
132 std::count(next_instruction_path.begin(), next_instruction_path.end(), '/');
133 // If the instruction path name contains too many subinstrions,
134 // print only the last 2 preceded by "../".
135 if (subinstruction_level > 2) {
136 std::size_t first_truncate_pos = next_instruction_path.find('/');
137 next_instruction_path = ".." + next_instruction_path.substr(first_truncate_pos);
138 }
139
140 // Print table row
141 if (samples_.find(measurement_name) != samples_.end()) {
142 std::cout << "| "; // started new row
143 std::cout << std::setw(70) << std::left << next_instruction_path << std::right;
144 std::cout << kTableDivider;
145 PrintMeasurementInTable(statistics_[measurement_name].min, measurement_name);
146 std::cout << kTableDivider;
147 PrintMeasurementInTable(statistics_[measurement_name].max, measurement_name);
148 std::cout << kTableDivider;
149 PrintMeasurementInTable(statistics_[measurement_name].mean, measurement_name);
150 std::cout << kTableDivider;
151 PrintMeasurementInTable(statistics_[measurement_name].median, measurement_name);
152 std::cout << kTableDivider;
153 std::cout << std::setw(15)
154 << statistics_[measurement_name].sd; // SD is always printed without measurement unit
155 std::cout << kTableDivider; // ended current row
156 std::cout << '\n';
157 PrintTableBorder();
158 }
159
160 for (const auto& sub_result : sub_results_) {
161 sub_result->PrintStatisticsTableContent(next_instruction_path, measurement_name);
162 }
163 }
164
GetMeasurementsNames()165 std::set<std::string> Result::GetMeasurementsNames() {
166 std::set<std::string> names;
167
168 for (const auto& it : samples_) {
169 names.insert(it.first);
170 }
171 for (const auto& sub_result : sub_results_) {
172 for (const auto& sub_name : sub_result->GetMeasurementsNames()) {
173 names.insert(sub_name);
174 }
175 }
176
177 return names;
178 }
179
PrintStatisticsTables()180 void Result::PrintStatisticsTables() {
181 std::set<std::string> measurement_names = GetMeasurementsNames();
182 for (const auto& s : measurement_names) {
183 std::cout << s << " statistics:";
184 PrintStatisticsTableHeader();
185 PrintStatisticsTableContent("", s);
186 std::cout << '\n';
187 }
188 }
189
PrintHistogramHeader(const std::string & measurement_name)190 void Result::PrintHistogramHeader(const std::string& measurement_name) {
191 if (measurement_name == "duration") {
192 std::cout.width(kSampleDisplayWidth - 3);
193 std::cout << "Time(" << time_unit_.name << ") |";
194 std::cout << " Normalized number of time samples\n";
195 } else if (measurement_name == "bandwidth") {
196 std::cout.width(kSampleDisplayWidth - 6);
197 std::cout << "Bandwidth(" << bandwidth_unit_.name << ") |";
198 std::cout << " Normalized number of bandwidth samples\n";
199 }
200 std::cout << std::setfill('-') << std::setw(kMaxHistogramWidth) << "" << std::setfill(' ');
201 std::cout << '\n';
202 }
203
204 // makes (normalized) histogram from vector
MakeHistogramFromVector(const std::vector<int> & freq_vector,const int min_value)205 void Result::MakeHistogramFromVector(const std::vector<int>& freq_vector, const int min_value) {
206 int sum = 0;
207 int max_frequency = *std::max_element(freq_vector.begin(), freq_vector.end());
208 for (std::size_t i = 0; i < freq_vector.size(); i++) {
209 std::cout.width(kSampleDisplayWidth);
210 std::cout << min_value + bin_size * i << kTableDivider;
211
212 int hist_width = ceil(static_cast<double>(freq_vector[i]) * kMaxHistogramWidth / max_frequency);
213 std::cout << std::setfill('#') << std::setw(hist_width) << "" << std::setfill(' ');
214
215 std::cout << " { " << freq_vector[i] << " }\n";
216
217 sum += freq_vector[i];
218 }
219
220 std::cout << '\n';
221 std::cout << "Total samples: { " << sum << " }\n";
222 }
223
224 // makes and returns the normalized frequency vector
ComputeNormalizedFrequencyVector(const std::string & measurement_name)225 std::vector<int> Result::ComputeNormalizedFrequencyVector(const std::string& measurement_name) {
226 int64_t min_value = statistics_[measurement_name].min;
227 if (measurement_name == "duration") {
228 min_value /= time_unit_.dividing_factor;
229 } else if (measurement_name == "bandwidth") {
230 min_value /= bandwidth_unit_.dividing_factor;
231 }
232
233 std::vector<int> freq_vector(kMaxHistogramHeight, 0);
234 for (const auto& sample : samples_[measurement_name]) {
235 int64_t sample_copy = sample;
236 if (measurement_name == "duration") {
237 sample_copy /= time_unit_.dividing_factor;
238 } else if (measurement_name == "bandwidth") {
239 sample_copy /= bandwidth_unit_.dividing_factor;
240 }
241 int64_t bin = (sample_copy - min_value) / bin_size;
242
243 freq_vector[bin]++;
244 }
245 return freq_vector;
246 }
247
GetTimeUnit(const int64_t min_value)248 Result::TimeUnit Result::GetTimeUnit(const int64_t min_value) {
249 TimeUnit result;
250 if (min_value <= 1e7) {
251 // time unit in nanoseconds
252 result.dividing_factor = 1;
253 result.name = "ns";
254 } else if (min_value <= 1e10) {
255 // time unit in microseconds
256 result.dividing_factor = 1e3;
257 result.name = "us";
258 } else if (min_value <= 1e13) {
259 // time unit in milliseconds
260 result.dividing_factor = 1e6;
261 result.name = "ms";
262 } else {
263 // time unit in seconds
264 result.dividing_factor = 1e9;
265 result.name = "s";
266 }
267 return result;
268 }
269
GetBandwidthUnit(const int64_t min_value)270 Result::BandwidthUnit Result::GetBandwidthUnit(const int64_t min_value) {
271 BandwidthUnit result;
272 if (min_value <= (1 << 15)) {
273 // bandwidth unit in KB/s
274 result.dividing_factor = 1;
275 result.name = "KiB/s";
276 } else if (min_value <= (1 << 25)) {
277 // bandwidth unit in MB/s
278 result.dividing_factor = 1 << 10;
279 result.name = "MiB/s";
280 } else {
281 // bandwidth unit in GB/s
282 result.dividing_factor = 1 << 20;
283 result.name = "GiB/s";
284 }
285 return result;
286 }
287
PrintHistograms(const std::string & instruction_path)288 void Result::PrintHistograms(const std::string& instruction_path) {
289 std::string next_instruction_path = ComputeNextInstructionPath(instruction_path);
290 std::cout << "\x1b[1m"; // beginning of bold
291 std::cout << "Instruction path: " << next_instruction_path;
292 std::cout << "\x1b[0m"; // ending of bold
293 std::cout << "\n\n";
294
295 for (const auto& sample : samples_) {
296 int64_t min_value = statistics_[sample.first].min;
297 int64_t max_value = statistics_[sample.first].max;
298 if (sample.first == "duration") {
299 time_unit_ = GetTimeUnit(statistics_[sample.first].min);
300 min_value /= time_unit_.dividing_factor;
301 max_value /= time_unit_.dividing_factor;
302 } else if (sample.first == "bandwidth") {
303 bandwidth_unit_ = GetBandwidthUnit(min_value);
304 min_value /= bandwidth_unit_.dividing_factor;
305 max_value /= bandwidth_unit_.dividing_factor;
306 }
307 bin_size = (max_value - min_value) / kMaxHistogramHeight + 1;
308
309 std::vector<int> freq_vector = ComputeNormalizedFrequencyVector(sample.first);
310 PrintHistogramHeader(sample.first);
311 MakeHistogramFromVector(freq_vector, min_value);
312 std::cout << "\n\n";
313
314 for (const auto& sub_result : sub_results_) {
315 sub_result->PrintHistograms(next_instruction_path);
316 }
317 }
318 }
319
320 // Print statistic measurement with given name in .csv
PrintMeasurementStatisticInCsv(std::ostream & csv_stream,const std::string & name)321 void Result::PrintMeasurementStatisticInCsv(std::ostream& csv_stream, const std::string& name) {
322 csv_stream << kCsvDelimiter;
323 csv_stream << statistics_[name].min << kCsvDelimiter;
324 csv_stream << statistics_[name].max << kCsvDelimiter;
325 csv_stream << statistics_[name].mean << kCsvDelimiter;
326 csv_stream << statistics_[name].median << kCsvDelimiter;
327 csv_stream << statistics_[name].sd;
328 }
329
PrintEmptyMeasurementInCsv(std::ostream & csv_stream)330 void PrintEmptyMeasurementInCsv(std::ostream& csv_stream) {
331 csv_stream << std::setfill(kCsvDelimiter) << std::setw(5) << "" << std::setfill(' ');
332 }
333
334 // Recursive function to print one row at a time using the .csv stream given as a parameter
335 // of statistics table content (the instruction path, min, max, mean and SD).
PrintStatisticInCsv(std::ostream & csv_stream,const std::string & instruction_path,const std::set<std::string> & measurements_names)336 void Result::PrintStatisticInCsv(std::ostream& csv_stream, const std::string& instruction_path,
337 const std::set<std::string>& measurements_names) {
338 std::string next_instruction_path = ComputeNextInstructionPath(instruction_path);
339
340 // print one row in csv
341 csv_stream << next_instruction_path;
342 for (const auto& measurement : measurements_names) {
343 if (statistics_.find(measurement) != statistics_.end()) {
344 PrintMeasurementStatisticInCsv(csv_stream, measurement);
345 } else {
346 PrintEmptyMeasurementInCsv(csv_stream);
347 }
348 }
349 csv_stream << '\n';
350
351 for (const auto& sub_result : sub_results_) {
352 sub_result->PrintStatisticInCsv(csv_stream, next_instruction_path, measurements_names);
353 }
354 }
355
PrintCsvHeader(std::ostream & csv_stream,const std::set<std::string> & measurement_names)356 void PrintCsvHeader(std::ostream& csv_stream, const std::set<std::string>& measurement_names) {
357 csv_stream << "Instruction path";
358 for (const auto& measurement : measurement_names) {
359 csv_stream << kCsvDelimiter;
360 csv_stream << measurement << " min" << kCsvDelimiter;
361 csv_stream << measurement << " max" << kCsvDelimiter;
362 csv_stream << measurement << " mean" << kCsvDelimiter;
363 csv_stream << measurement << " median" << kCsvDelimiter;
364 csv_stream << measurement << " SD";
365 }
366 csv_stream << '\n';
367 }
368
MakeStatisticsCsv()369 void Result::MakeStatisticsCsv() {
370 std::ostream csv_stream(std::cout.rdbuf());
371
372 std::set<std::string> measurements_names = GetMeasurementsNames();
373 PrintCsvHeader(csv_stream, measurements_names);
374
375 PrintStatisticInCsv(csv_stream, "", measurements_names);
376 }
377
StoreStatisticsInPb(dittosuiteproto::Metrics * metrics,const std::string & name)378 void Result::StoreStatisticsInPb(dittosuiteproto::Metrics* metrics,
379 const std::string& name) {
380 metrics->set_name(name);
381 metrics->set_min(statistics_[name].min);
382 metrics->set_max(statistics_[name].max);
383 metrics->set_mean(statistics_[name].mean);
384 metrics->set_median(statistics_[name].median);
385 metrics->set_sd(statistics_[name].sd);
386 }
387
__ToPb(dittosuiteproto::Result * result_pb)388 void Result::__ToPb(dittosuiteproto::Result* result_pb) {
389 result_pb->set_name(name_);
390
391
392 for (const auto &stats : statistics_) {
393 StoreStatisticsInPb(result_pb->add_metrics(), stats.first);
394 }
395
396 for (const auto& sub_result : sub_results_) {
397 sub_result->__ToPb(result_pb->add_sub_result());
398 }
399 }
400
ToPb()401 dittosuiteproto::Result Result::ToPb() {
402 dittosuiteproto::Result result_pb;
403 std::set<std::string> measurements_names = GetMeasurementsNames();
404
405 __ToPb(&result_pb);
406
407 return result_pb;
408 }
409
SetStatistics(const std::string & name,const Result::Statistics & statistics)410 void Result::SetStatistics(const std::string& name, const Result::Statistics& statistics) {
411 statistics_[name] = statistics;
412 }
413
PrintPb(const dittosuiteproto::Result & pb)414 void PrintPb(const dittosuiteproto::Result &pb) {
415 std::string json;
416 google::protobuf::util::JsonPrintOptions options;
417
418 options.add_whitespace = true;
419 auto status = google::protobuf::util::MessageToJsonString(pb, &json, options);
420 if (status.ok()) {
421 std::ostream pb_stream(std::cout.rdbuf());
422 pb_stream << json << std::endl;
423 }
424 }
425
FromPb(const dittosuiteproto::Result & pb)426 std::unique_ptr<Result> Result::FromPb(const dittosuiteproto::Result& pb) {
427 auto result = std::make_unique<Result>(pb.name(), 1);
428
429 for (const auto& m : pb.metrics()) {
430 Result::Statistics stats = {
431 .min = m.min(), .max = m.max(), .mean = m.mean(), .median = m.median(), .sd = m.sd()};
432 result->SetStatistics(m.name(), stats);
433 }
434
435 for (const auto& r : pb.sub_result()) {
436 result->AddSubResult(Result::FromPb(r));
437 }
438
439 return result;
440 }
441
442 } // namespace dittosuite
443