1 /*
2 * Copyright 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "model/setup/async_manager.h" // for AsyncManager
17
18 #include <errno.h> // for errno
19
20 #include <atomic> // for atomic_bool, atomic_e...
21 #include <condition_variable> // for condition_variable
22 #include <cstring> // for strerror
23 #include <limits> // for numeric_limits
24 #include <map> // for map<>::value_type, map
25 #include <mutex> // for unique_lock, mutex
26 #include <ratio> // for ratio
27 #include <set> // for set
28 #include <thread> // for thread
29 #include <type_traits> // for remove_extent_t
30 #include <utility> // for pair, make_pair, oper...
31 #include <vector> // for vector
32
33 #include "aemu/base/EintrWrapper.h" // for HANDLE_EINTR
34 #include "aemu/base/Log.h" // for LogStreamVoidify, Log...
35 #include "aemu/base/logging/CLog.h"
36 #include "aemu/base/sockets/SocketUtils.h" // for socketRecv, socketSet...
37 #include "aemu/base/sockets/SocketWaiter.h" // for SocketWaiter, SocketW...
38
39 namespace rootcanal {
40 // Implementation of AsyncManager is divided between two classes, three if
41 // AsyncManager itself is taken into account, but its only responsability
42 // besides being a proxy for the other two classes is to provide a global
43 // synchronization mechanism for callbacks and client code to use.
44
45 // The watching of file descriptors is done through AsyncFdWatcher. Several
46 // objects of this class may coexist simultaneosly as they share no state.
47 // After construction of this objects nothing happens beyond some very simple
48 // member initialization. When the first FD is set up for watching the object
49 // starts a new thread which watches the given (and later provided) FDs using
50 // select() inside a loop. A special FD (a pipe) is also watched which is
51 // used to notify the thread of internal changes on the object state (like
52 // the addition of new FDs to watch on). Every access to internal state is
53 // synchronized using a single internal mutex. The thread is only stopped on
54 // destruction of the object, by modifying a flag, which is the only member
55 // variable accessed without acquiring the lock (because the notification to
56 // the thread is done later by writing to a pipe which means the thread will
57 // be notified regardless of what phase of the loop it is in that moment)
58
59 // The scheduling of asynchronous tasks, periodic or not, is handled by the
60 // AsyncTaskManager class. Like the one for FDs, this class shares no internal
61 // state between different instances so it is safe to use several objects of
62 // this class, also nothing interesting happens upon construction, but only
63 // after a Task has been scheduled and access to internal state is synchronized
64 // using a single internal mutex. When the first task is scheduled a thread
65 // is started which monitors a queue of tasks. The queue is peeked to see
66 // when the next task should be carried out and then the thread performs a
67 // (absolute) timed wait on a condition variable. The wait ends because of a
68 // time out or a notify on the cond var, the former means a task is due
69 // for execution while the later means there has been a change in internal
70 // state, like a task has been scheduled/canceled or the flag to stop has
71 // been set. Setting and querying the stop flag or modifying the task queue
72 // and subsequent notification on the cond var is done atomically (e.g while
73 // holding the lock on the internal mutex) to ensure that the thread never
74 // misses the notification, since notifying a cond var is not persistent as
75 // writing on a pipe (if not done this way, the thread could query the
76 // stopping flag and be put aside by the OS scheduler right after, then the
77 // 'stop thread' procedure could run, setting the flag, notifying a cond
78 // var that no one is waiting on and joining the thread, the thread then
79 // resumes execution believing that it needs to continue and waits on the
80 // cond var possibly forever if there are no tasks scheduled, efectively
81 // causing a deadlock).
82
83 // This number also states the maximum number of scheduled tasks we can handle
84 // at a given time
85 static const uint16_t kMaxTaskId =
86 -1; /* 2^16 - 1, permisible ids are {1..2^16-1}*/
NextAsyncTaskId(const AsyncTaskId id)87 static inline AsyncTaskId NextAsyncTaskId(const AsyncTaskId id) {
88 return (id == kMaxTaskId) ? 1 : id + 1;
89 }
90 // The buffer is only 10 bytes because the expected number of bytes
91 // written on this socket is 1. It is possible that the thread is notified
92 // more than once but highly unlikely, so a buffer of size 10 seems enough
93 // and the reads are performed inside a while just in case it isn't. From
94 // the thread routine's point of view it is the same to have been notified
95 // just once or 100 times so it just tries to consume the entire buffer.
96 // In the cases where an interrupt would cause read to return without
97 // having read everything that was available a new iteration of the thread
98 // loop will bring execution to this point almost immediately, so there is
99 // no need to treat that case.
100 static const int kNotificationBufferSize = 10;
101
102 using android::base::SocketWaiter;
103
104 // Async File Descriptor Watcher Implementation:
105 class AsyncManager::AsyncFdWatcher {
106 public:
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)107 int WatchFdForNonBlockingReads(
108 int file_descriptor, const ReadCallback &on_read_fd_ready_callback) {
109 // add file descriptor and callback
110 {
111 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
112 watched_shared_fds_[file_descriptor] = on_read_fd_ready_callback;
113 }
114
115 // start the thread if not started yet
116 int started = tryStartThread();
117 if (started != 0) {
118 derror("%s: Unable to start thread", __func__);
119 return started;
120 }
121
122 // notify the thread so that it knows of the new FD
123 notifyThread();
124
125 return 0;
126 }
127
StopWatchingFileDescriptor(int file_descriptor)128 void StopWatchingFileDescriptor(int file_descriptor) {
129 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
130 watched_shared_fds_.erase(file_descriptor);
131 }
132
133 AsyncFdWatcher() = default;
134 AsyncFdWatcher(const AsyncFdWatcher &) = delete;
135 AsyncFdWatcher &operator=(const AsyncFdWatcher &) = delete;
136
137 ~AsyncFdWatcher() = default;
138
stopThread()139 int stopThread() {
140 if (!std::atomic_exchange(&running_, false)) {
141 return 0; // if not running already
142 }
143
144 notifyThread();
145
146 if (std::this_thread::get_id() != thread_.get_id()) {
147 thread_.join();
148 } else {
149 dwarning("%s: Starting thread stop from inside the reading thread itself",
150 __func__);
151 }
152
153 {
154 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
155 watched_shared_fds_.clear();
156 }
157
158 return 0;
159 }
160
161 private:
162 // Make sure to call this with at least one file descriptor ready to be
163 // watched upon or the thread routine will return immediately
tryStartThread()164 int tryStartThread() {
165 if (std::atomic_exchange(&running_, true)) {
166 return 0; // if already running
167 }
168 // set up the communication channel
169 if (android::base::socketCreatePair(¬ification_listen_fd_,
170 ¬ification_write_fd_)) {
171 derror(
172 "%s:Unable to establish a communication channel to the reading "
173 "thread",
174 __func__);
175 return -1;
176 }
177 android::base::socketSetNonBlocking(notification_listen_fd_);
178 android::base::socketSetNonBlocking(notification_write_fd_);
179
180 thread_ = std::thread([this]() { ThreadRoutine(); });
181 if (!thread_.joinable()) {
182 derror("%s: Unable to start reading thread", __func__);
183 return -1;
184 }
185 return 0;
186 }
187
notifyThread()188 int notifyThread() {
189 char buffer = '0';
190 if (android::base::socketSend(notification_write_fd_, &buffer, 1) < 0) {
191 derror("%s: Unable to send message to reading thread", __func__);
192 return -1;
193 }
194 return 0;
195 }
196
setUpFileDescriptorSet(SocketWaiter * read_fds)197 void setUpFileDescriptorSet(SocketWaiter *read_fds) {
198 // add comm channel to the set
199 read_fds->update(notification_listen_fd_, SocketWaiter::Event::kEventRead);
200
201 // add watched FDs to the set
202 {
203 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
204 for (auto &fdp : watched_shared_fds_) {
205 read_fds->update(fdp.first, SocketWaiter::Event::kEventRead);
206 }
207 }
208 }
209
210 // check the comm channel and read everything there
consumeThreadNotifications(SocketWaiter * read_fds)211 bool consumeThreadNotifications(SocketWaiter *read_fds) {
212 if (read_fds->pendingEventsFor(notification_listen_fd_)) {
213 char buffer[kNotificationBufferSize];
214 while (HANDLE_EINTR(android::base::socketRecv(
215 notification_listen_fd_, buffer, kNotificationBufferSize)) ==
216 kNotificationBufferSize) {
217 }
218 return true;
219 }
220 return false;
221 }
222
223 // check all file descriptors and call callbacks if necesary
runAppropriateCallbacks(SocketWaiter * read_fds)224 void runAppropriateCallbacks(SocketWaiter *read_fds) {
225 // not a good idea to call a callback while holding the FD lock,
226 // nor to release the lock while traversing the map
227 std::vector<decltype(watched_shared_fds_)::value_type> fds;
228 std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
229 for (auto &fdc : watched_shared_fds_) {
230 auto pending = read_fds->pendingEventsFor(fdc.first);
231 if (pending == SocketWaiter::kEventRead) {
232 fds.push_back(fdc);
233 }
234 }
235
236 for (auto &p : fds) {
237 p.second(p.first);
238 }
239 }
240
ThreadRoutine()241 void ThreadRoutine() {
242 auto read_fds = std::unique_ptr<SocketWaiter>(SocketWaiter::create());
243 while (running_) {
244 read_fds->reset();
245 setUpFileDescriptorSet(read_fds.get());
246
247 // wait until there is data available to read on some FD
248 int retval = read_fds->wait(std::numeric_limits<int64_t>::max());
249 if (retval <= 0) { // there was some error or a timeout
250 derror(
251 "%s: There was an error while waiting for data on the file "
252 "descriptors: %s",
253 __func__, strerror(errno));
254 continue;
255 }
256
257 consumeThreadNotifications(read_fds.get());
258
259 // Do not read if there was a call to stop running
260 if (!running_) {
261 break;
262 }
263
264 runAppropriateCallbacks(read_fds.get());
265 }
266 }
267
268 std::atomic_bool running_{false};
269 std::thread thread_;
270 std::recursive_mutex internal_mutex_;
271
272 // android::base::SocketWaiter socket_waiter_;
273 std::map<int, ReadCallback> watched_shared_fds_;
274
275 // A pair of FD to send information to the reading thread
276 int notification_listen_fd_{};
277 int notification_write_fd_{};
278 };
279
280 // Async task manager implementation
281 class AsyncManager::AsyncTaskManager {
282 public:
GetNextUserId()283 AsyncUserId GetNextUserId() { return lastUserId_++; }
284
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)285 AsyncTaskId ExecAsync(AsyncUserId user_id, std::chrono::milliseconds delay,
286 const TaskCallback &callback) {
287 return scheduleTask(std::make_shared<Task>(
288 std::chrono::steady_clock::now() + delay, callback, user_id));
289 }
290
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)291 AsyncTaskId ExecAsyncPeriodically(AsyncUserId user_id,
292 std::chrono::milliseconds delay,
293 std::chrono::milliseconds period,
294 const TaskCallback &callback) {
295 return scheduleTask(std::make_shared<Task>(
296 std::chrono::steady_clock::now() + delay, period, callback, user_id));
297 }
298
CancelAsyncTask(AsyncTaskId async_task_id)299 bool CancelAsyncTask(AsyncTaskId async_task_id) {
300 // remove task from queue (and task id association) while holding lock
301 std::unique_lock<std::mutex> guard(internal_mutex_);
302 return cancel_task_with_lock_held(async_task_id);
303 }
304
CancelAsyncTasksFromUser(AsyncUserId user_id)305 bool CancelAsyncTasksFromUser(AsyncUserId user_id) {
306 // remove task from queue (and task id association) while holding lock
307 std::unique_lock<std::mutex> guard(internal_mutex_);
308 if (tasks_by_user_id_.count(user_id) == 0) {
309 return false;
310 }
311 for (auto task : tasks_by_user_id_[user_id]) {
312 cancel_task_with_lock_held(task);
313 }
314 tasks_by_user_id_.erase(user_id);
315 return true;
316 }
317
Synchronize(const CriticalCallback & critical)318 void Synchronize(const CriticalCallback &critical) {
319 std::unique_lock<std::mutex> guard(synchronization_mutex_);
320 critical();
321 }
322
323 AsyncTaskManager() = default;
324 AsyncTaskManager(const AsyncTaskManager &) = delete;
325 AsyncTaskManager &operator=(const AsyncTaskManager &) = delete;
326
327 ~AsyncTaskManager() = default;
328
stopThread()329 int stopThread() {
330 {
331 std::unique_lock<std::mutex> guard(internal_mutex_);
332 tasks_by_id_.clear();
333 task_queue_.clear();
334 if (!running_) {
335 return 0;
336 }
337 running_ = false;
338 // notify the thread
339 internal_cond_var_.notify_one();
340 } // release the lock before joining a thread that is likely waiting for it
341 if (std::this_thread::get_id() != thread_.get_id()) {
342 thread_.join();
343 } else {
344 dwarning("%s: Starting thread stop from inside the task thread itself",
345 __func__);
346 }
347 return 0;
348 }
349
350 private:
351 // Holds the data for each task
352 class Task {
353 public:
Task(std::chrono::steady_clock::time_point time,std::chrono::milliseconds period,const TaskCallback & callback,AsyncUserId user)354 Task(std::chrono::steady_clock::time_point time,
355 std::chrono::milliseconds period, const TaskCallback &callback,
356 AsyncUserId user)
357 : time(time),
358 periodic(true),
359 period(period),
360 callback(callback),
361 task_id(kInvalidTaskId),
362 user_id(user) {}
Task(std::chrono::steady_clock::time_point time,const TaskCallback & callback,AsyncUserId user)363 Task(std::chrono::steady_clock::time_point time,
364 const TaskCallback &callback, AsyncUserId user)
365 : time(time),
366 periodic(false),
367 callback(callback),
368 task_id(kInvalidTaskId),
369 user_id(user) {}
370
371 // Operators needed to be in a collection
operator <(const Task & another) const372 bool operator<(const Task &another) const {
373 return std::make_pair(time, task_id) <
374 std::make_pair(another.time, another.task_id);
375 }
376
isPeriodic() const377 bool isPeriodic() const { return periodic; }
378
379 // These fields should no longer be public if the class ever becomes
380 // public or gets more complex
381 std::chrono::steady_clock::time_point time;
382 bool periodic;
383 std::chrono::milliseconds period{};
384 std::mutex in_callback; // Taken when the callback is active
385 TaskCallback callback;
386 AsyncTaskId task_id;
387 AsyncUserId user_id;
388 };
389
390 // A comparator class to put shared pointers to tasks in an ordered set
391 struct task_p_comparator {
operator ()rootcanal::AsyncManager::AsyncTaskManager::task_p_comparator392 bool operator()(const std::shared_ptr<Task> &t1,
393 const std::shared_ptr<Task> &t2) const {
394 return *t1 < *t2;
395 }
396 };
397
cancel_task_with_lock_held(AsyncTaskId async_task_id)398 bool cancel_task_with_lock_held(AsyncTaskId async_task_id) {
399 if (tasks_by_id_.count(async_task_id) == 0) {
400 return false;
401 }
402
403 // Now make sure we are not running this task.
404 // 2 cases
405 // - This is called from thread_, this means a scheduled task is actually
406 // unregistering.
407 // - Another thread is calling us, let's make sure the task is not active.
408 if (thread_.get_id() != std::this_thread::get_id()) {
409 auto task = tasks_by_id_[async_task_id];
410 const std::lock_guard<std::mutex> lock(task->in_callback);
411 task_queue_.erase(task);
412 tasks_by_id_.erase(async_task_id);
413 } else {
414 task_queue_.erase(tasks_by_id_[async_task_id]);
415 tasks_by_id_.erase(async_task_id);
416 }
417
418 return true;
419 }
420
scheduleTask(const std::shared_ptr<Task> & task)421 AsyncTaskId scheduleTask(const std::shared_ptr<Task> &task) {
422 {
423 std::unique_lock<std::mutex> guard(internal_mutex_);
424 // no more room for new tasks, we need a larger type for IDs
425 if (tasks_by_id_.size() == kMaxTaskId) // TODO potentially type unsafe
426 return kInvalidTaskId;
427 do {
428 lastTaskId_ = NextAsyncTaskId(lastTaskId_);
429 } while (isTaskIdInUse(lastTaskId_));
430 task->task_id = lastTaskId_;
431 // add task to the queue and map
432 tasks_by_id_[lastTaskId_] = task;
433 tasks_by_user_id_[task->user_id].insert(task->task_id);
434 task_queue_.insert(task);
435 }
436 // start thread if necessary
437 int started = tryStartThread();
438 if (started != 0) {
439 derror("%s: Unable to start thread", __func__);
440 return kInvalidTaskId;
441 }
442 // notify the thread so that it knows of the new task
443 internal_cond_var_.notify_one();
444 // return task id
445 return task->task_id;
446 }
447
isTaskIdInUse(const AsyncTaskId & task_id) const448 bool isTaskIdInUse(const AsyncTaskId &task_id) const {
449 return tasks_by_id_.count(task_id) != 0;
450 }
451
tryStartThread()452 int tryStartThread() {
453 // need the lock because of the running flag and the cond var
454 std::unique_lock<std::mutex> guard(internal_mutex_);
455 // check that the thread is not yet running
456 if (running_) {
457 return 0;
458 }
459 // start the thread
460 running_ = true;
461 thread_ = std::thread([this]() { ThreadRoutine(); });
462 if (!thread_.joinable()) {
463 derror("%s: Unable to start task thread", __func__);
464 return -1;
465 }
466 return 0;
467 }
468
ThreadRoutine()469 void ThreadRoutine() {
470 while (running_) {
471 TaskCallback callback;
472 std::shared_ptr<Task> task_p;
473 bool run_it = false;
474 {
475 std::unique_lock<std::mutex> guard(internal_mutex_);
476 if (!task_queue_.empty()) {
477 task_p = *(task_queue_.begin());
478 if (task_p->time < std::chrono::steady_clock::now()) {
479 run_it = true;
480 callback = task_p->callback;
481 task_queue_.erase(task_p); // need to remove and add again if
482 // periodic to update order
483 if (task_p->isPeriodic()) {
484 task_p->time += task_p->period;
485 task_queue_.insert(task_p);
486 } else {
487 tasks_by_user_id_[task_p->user_id].erase(task_p->task_id);
488 tasks_by_id_.erase(task_p->task_id);
489 }
490 }
491 }
492 }
493 if (run_it) {
494 const std::lock_guard<std::mutex> lock(task_p->in_callback);
495 Synchronize(callback);
496 }
497 {
498 std::unique_lock<std::mutex> guard(internal_mutex_);
499 // check for termination right before waiting
500 if (!running_) break;
501 // wait until time for the next task (if any)
502 if (task_queue_.size() > 0) {
503 // Make a copy of the time_point because wait_until takes a reference
504 // to it and may read it after waiting, by which time the task may
505 // have been freed (e.g. via CancelAsyncTask).
506 std::chrono::steady_clock::time_point time =
507 (*task_queue_.begin())->time;
508 internal_cond_var_.wait_until(guard, time);
509 } else {
510 internal_cond_var_.wait(guard);
511 }
512 }
513 }
514 }
515
516 bool running_ = false;
517 std::thread thread_;
518 std::mutex internal_mutex_;
519 std::mutex synchronization_mutex_;
520 std::condition_variable internal_cond_var_;
521
522 AsyncTaskId lastTaskId_ = kInvalidTaskId;
523 AsyncUserId lastUserId_{1};
524 std::map<AsyncTaskId, std::shared_ptr<Task>> tasks_by_id_;
525 std::map<AsyncUserId, std::set<AsyncTaskId>> tasks_by_user_id_;
526 std::set<std::shared_ptr<Task>, task_p_comparator> task_queue_;
527 };
528
529 // Async Manager Implementation:
AsyncManager()530 AsyncManager::AsyncManager()
531 : fdWatcher_p_(new AsyncFdWatcher()),
532 taskManager_p_(new AsyncTaskManager()) {}
533
~AsyncManager()534 AsyncManager::~AsyncManager() {
535 // Make sure the threads are stopped before destroying the object.
536 // The threads need to be stopped here and not in each internal class'
537 // destructor because unique_ptr's reset() first assigns nullptr to the
538 // pointer and only then calls the destructor, so any callback running
539 // on these threads would dereference a null pointer if they called a member
540 // function of this class.
541 fdWatcher_p_->stopThread();
542 taskManager_p_->stopThread();
543 }
544
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)545 int AsyncManager::WatchFdForNonBlockingReads(
546 int file_descriptor, const ReadCallback &on_read_fd_ready_callback) {
547 return fdWatcher_p_->WatchFdForNonBlockingReads(file_descriptor,
548 on_read_fd_ready_callback);
549 }
550
StopWatchingFileDescriptor(int file_descriptor)551 void AsyncManager::StopWatchingFileDescriptor(int file_descriptor) {
552 fdWatcher_p_->StopWatchingFileDescriptor(file_descriptor);
553 }
554
GetNextUserId()555 AsyncUserId AsyncManager::GetNextUserId() {
556 return taskManager_p_->GetNextUserId();
557 }
558
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)559 AsyncTaskId AsyncManager::ExecAsync(AsyncUserId user_id,
560 std::chrono::milliseconds delay,
561 const TaskCallback &callback) {
562 return taskManager_p_->ExecAsync(user_id, delay, callback);
563 }
564
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)565 AsyncTaskId AsyncManager::ExecAsyncPeriodically(
566 AsyncUserId user_id, std::chrono::milliseconds delay,
567 std::chrono::milliseconds period, const TaskCallback &callback) {
568 return taskManager_p_->ExecAsyncPeriodically(user_id, delay, period,
569 callback);
570 }
571
CancelAsyncTask(AsyncTaskId async_task_id)572 bool AsyncManager::CancelAsyncTask(AsyncTaskId async_task_id) {
573 return taskManager_p_->CancelAsyncTask(async_task_id);
574 }
575
CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id)576 bool AsyncManager::CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id) {
577 return taskManager_p_->CancelAsyncTasksFromUser(user_id);
578 }
579
Synchronize(const CriticalCallback & critical)580 void AsyncManager::Synchronize(const CriticalCallback &critical) {
581 taskManager_p_->Synchronize(critical);
582 }
583 } // namespace rootcanal
584