1 //
2 // Copyright (C) 2012 The Android Open Source Project
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "update_engine/payload_consumer/delta_performer.h"
18 
19 #include <linux/fs.h>
20 
21 #include <algorithm>
22 #include <chrono>
23 #include <cstring>
24 #include <memory>
25 #include <set>
26 #include <string>
27 #include <utility>
28 #include <vector>
29 
30 #include <android-base/properties.h>
31 #include <android-base/strings.h>
32 #include <base/files/file_util.h>
33 #include <base/format_macros.h>
34 #include <base/metrics/histogram_macros.h>
35 #include <base/strings/string_number_conversions.h>
36 #include <base/strings/stringprintf.h>
37 #include <base/time/time.h>
38 #include <brillo/data_encoding.h>
39 #include <bsdiff/bspatch.h>
40 #include <google/protobuf/repeated_field.h>
41 #include <puffin/puffpatch.h>
42 
43 #include "libsnapshot/cow_format.h"
44 #include "update_engine/common/constants.h"
45 #include "update_engine/common/download_action.h"
46 #include "update_engine/common/error_code.h"
47 #include "update_engine/common/error_code_utils.h"
48 #include "update_engine/common/hardware_interface.h"
49 #include "update_engine/common/prefs_interface.h"
50 #include "update_engine/common/terminator.h"
51 #include "update_engine/common/utils.h"
52 #include "update_engine/payload_consumer/partition_update_generator_interface.h"
53 #include "update_engine/payload_consumer/partition_writer.h"
54 #include "update_engine/update_metadata.pb.h"
55 #if USE_FEC
56 #include "update_engine/payload_consumer/fec_file_descriptor.h"
57 #endif  // USE_FEC
58 #include "update_engine/payload_consumer/payload_constants.h"
59 #include "update_engine/payload_consumer/payload_verifier.h"
60 
61 using google::protobuf::RepeatedPtrField;
62 using std::min;
63 using std::string;
64 using std::vector;
65 
66 namespace chromeos_update_engine {
67 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
68 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
69 const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
70 const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
71 const uint64_t DeltaPerformer::kCheckpointFrequencySeconds = 1;
72 
73 namespace {
74 const int kUpdateStateOperationInvalid = -1;
75 const int kMaxResumedUpdateFailures = 10;
76 
77 }  // namespace
78 
79 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer
80 // arithmetic.
IntRatio(uint64_t part,uint64_t total,uint64_t norm)81 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
82   return part * norm / total;
83 }
84 
LogProgress(const char * message_prefix)85 void DeltaPerformer::LogProgress(const char* message_prefix) {
86   // Format operations total count and percentage.
87   string total_operations_str("?");
88   string completed_percentage_str("");
89   if (num_total_operations_) {
90     total_operations_str = std::to_string(num_total_operations_);
91     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
92     completed_percentage_str = base::StringPrintf(
93         " (%" PRIu64 "%%)",
94         IntRatio(next_operation_num_, num_total_operations_, 100));
95   }
96 
97   // Format download total count and percentage.
98   size_t payload_size = payload_->size;
99   string payload_size_str("?");
100   string downloaded_percentage_str("");
101   if (payload_size) {
102     payload_size_str = std::to_string(payload_size);
103     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
104     downloaded_percentage_str = base::StringPrintf(
105         " (%" PRIu64 "%%)", IntRatio(total_bytes_received_, payload_size, 100));
106   }
107 
108   LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
109             << "/" << total_operations_str << " operations"
110             << completed_percentage_str << ", " << total_bytes_received_ << "/"
111             << payload_size_str << " bytes downloaded"
112             << downloaded_percentage_str << ", overall progress "
113             << overall_progress_ << "%";
114 }
115 
UpdateOverallProgress(bool force_log,const char * message_prefix)116 void DeltaPerformer::UpdateOverallProgress(bool force_log,
117                                            const char* message_prefix) {
118   // Compute our download and overall progress.
119   unsigned new_overall_progress = 0;
120   static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
121                 "Progress weights don't add up");
122   // Only consider download progress if its total size is known; otherwise
123   // adjust the operations weight to compensate for the absence of download
124   // progress. Also, make sure to cap the download portion at
125   // kProgressDownloadWeight, in case we end up downloading more than we
126   // initially expected (this indicates a problem, but could generally happen).
127   // TODO(garnold) the correction of operations weight when we do not have the
128   // total payload size, as well as the conditional guard below, should both be
129   // eliminated once we ensure that the payload_size in the install plan is
130   // always given and is non-zero. This currently isn't the case during unit
131   // tests (see chromium-os:37969).
132   size_t payload_size = payload_->size;
133   unsigned actual_operations_weight = kProgressOperationsWeight;
134   if (payload_size)
135     new_overall_progress +=
136         min(static_cast<unsigned>(IntRatio(
137                 total_bytes_received_, payload_size, kProgressDownloadWeight)),
138             kProgressDownloadWeight);
139   else
140     actual_operations_weight += kProgressDownloadWeight;
141 
142   // Only add completed operations if their total number is known; we definitely
143   // expect an update to have at least one operation, so the expectation is that
144   // this will eventually reach |actual_operations_weight|.
145   if (num_total_operations_)
146     new_overall_progress += IntRatio(
147         next_operation_num_, num_total_operations_, actual_operations_weight);
148 
149   // Progress ratio cannot recede, unless our assumptions about the total
150   // payload size, total number of operations, or the monotonicity of progress
151   // is breached.
152   if (new_overall_progress < overall_progress_) {
153     LOG(WARNING) << "progress counter receded from " << overall_progress_
154                  << "% down to " << new_overall_progress << "%; this is a bug";
155     force_log = true;
156   }
157   overall_progress_ = new_overall_progress;
158 
159   // Update chunk index, log as needed: if forced by called, or we completed a
160   // progress chunk, or a timeout has expired.
161   base::TimeTicks curr_time = base::TimeTicks::Now();
162   unsigned curr_progress_chunk =
163       overall_progress_ * kProgressLogMaxChunks / 100;
164   if (force_log || curr_progress_chunk > last_progress_chunk_ ||
165       curr_time > forced_progress_log_time_) {
166     forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
167     LogProgress(message_prefix);
168   }
169   last_progress_chunk_ = curr_progress_chunk;
170 }
171 
CopyDataToBuffer(const char ** bytes_p,size_t * count_p,size_t max)172 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p,
173                                         size_t* count_p,
174                                         size_t max) {
175   const size_t count = *count_p;
176   if (!count)
177     return 0;  // Special case shortcut.
178   size_t read_len = min(count, max - buffer_.size());
179   const char* bytes_start = *bytes_p;
180   const char* bytes_end = bytes_start + read_len;
181   buffer_.reserve(max);
182   buffer_.insert(buffer_.end(), bytes_start, bytes_end);
183   *bytes_p = bytes_end;
184   *count_p = count - read_len;
185   return read_len;
186 }
187 
HandleOpResult(bool op_result,const char * op_type_name,ErrorCode * error)188 bool DeltaPerformer::HandleOpResult(bool op_result,
189                                     const char* op_type_name,
190                                     ErrorCode* error) {
191   if (op_result)
192     return true;
193 
194   LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
195              << next_operation_num_ << ", which is the operation "
196              << GetPartitionOperationNum() << " in partition \""
197              << partitions_[current_partition_].partition_name() << "\"";
198   if (*error == ErrorCode::kSuccess)
199     *error = ErrorCode::kDownloadOperationExecutionError;
200   return false;
201 }
202 
Close()203 int DeltaPerformer::Close() {
204   // Checkpoint update progress before canceling, so that subsequent attempts
205   // can resume from exactly where update_engine left last time.
206   CheckpointUpdateProgress(true);
207   int err = -CloseCurrentPartition();
208   LOG_IF(ERROR,
209          !payload_hash_calculator_.Finalize() ||
210              !signed_hash_calculator_.Finalize())
211       << "Unable to finalize the hash.";
212   if (!buffer_.empty()) {
213     LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
214     if (err >= 0)
215       err = 1;
216   }
217   return -err;
218 }
219 
CloseCurrentPartition()220 int DeltaPerformer::CloseCurrentPartition() {
221   if (!partition_writer_) {
222     return 0;
223   }
224   int err = partition_writer_->Close();
225   partition_writer_ = nullptr;
226   return err;
227 }
228 
OpenCurrentPartition()229 bool DeltaPerformer::OpenCurrentPartition() {
230   if (current_partition_ >= partitions_.size())
231     return false;
232 
233   const PartitionUpdate& partition = partitions_[current_partition_];
234   size_t num_previous_partitions =
235       install_plan_->partitions.size() - partitions_.size();
236   const InstallPlan::Partition& install_part =
237       install_plan_->partitions[num_previous_partitions + current_partition_];
238   auto dynamic_control = boot_control_->GetDynamicPartitionControl();
239   partition_writer_ = CreatePartitionWriter(
240       partition,
241       install_part,
242       dynamic_control,
243       block_size_,
244       interactive_,
245       IsDynamicPartition(install_part.name, install_plan_->target_slot));
246   // Open source fds if we have a delta payload, or for partitions in the
247   // partial update.
248   const bool source_may_exist = manifest_.partial_update() ||
249                                 payload_->type == InstallPayloadType::kDelta;
250   const size_t partition_operation_num = GetPartitionOperationNum();
251 
252   TEST_AND_RETURN_FALSE(partition_writer_->Init(
253       install_plan_, source_may_exist, partition_operation_num));
254   CheckpointUpdateProgress(true);
255   return true;
256 }
257 
GetPartitionOperationNum()258 size_t DeltaPerformer::GetPartitionOperationNum() {
259   return next_operation_num_ -
260          (current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
261 }
262 
263 namespace {
264 
LogPartitionInfoHash(const PartitionInfo & info,const string & tag)265 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
266   string sha256 = HexEncode(info.hash());
267   LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
268             << " size: " << info.size();
269 }
270 
LogPartitionInfo(const vector<PartitionUpdate> & partitions)271 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
272   for (const PartitionUpdate& partition : partitions) {
273     if (partition.has_old_partition_info()) {
274       LogPartitionInfoHash(partition.old_partition_info(),
275                            "old " + partition.partition_name());
276     }
277     LogPartitionInfoHash(partition.new_partition_info(),
278                          "new " + partition.partition_name());
279   }
280 }
281 
282 }  // namespace
283 
IsHeaderParsed() const284 bool DeltaPerformer::IsHeaderParsed() const {
285   return metadata_size_ != 0;
286 }
287 
ParsePayloadMetadata(const brillo::Blob & payload,ErrorCode * error)288 MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
289     const brillo::Blob& payload, ErrorCode* error) {
290   *error = ErrorCode::kSuccess;
291 
292   if (!IsHeaderParsed()) {
293     MetadataParseResult result =
294         payload_metadata_.ParsePayloadHeader(payload, error);
295     if (result != MetadataParseResult::kSuccess)
296       return result;
297 
298     metadata_size_ = payload_metadata_.GetMetadataSize();
299     metadata_signature_size_ = payload_metadata_.GetMetadataSignatureSize();
300     major_payload_version_ = payload_metadata_.GetMajorVersion();
301 
302     // If the metadata size is present in install plan, check for it immediately
303     // even before waiting for that many number of bytes to be downloaded in the
304     // payload. This will prevent any attack which relies on us downloading data
305     // beyond the expected metadata size.
306     if (install_plan_->hash_checks_mandatory) {
307       if (payload_->metadata_size != metadata_size_) {
308         LOG(ERROR) << "Mandatory metadata size in Omaha response ("
309                    << payload_->metadata_size
310                    << ") is missing/incorrect, actual = " << metadata_size_;
311         *error = ErrorCode::kDownloadInvalidMetadataSize;
312         return MetadataParseResult::kError;
313       }
314     }
315 
316     // Check that the |metadata signature size_| and |metadata_size_| are not
317     // very big numbers. This is necessary since |update_engine| needs to write
318     // these values into the buffer before being able to use them, and if an
319     // attacker sets these values to a very big number, the buffer will overflow
320     // and |update_engine| will crash. A simple way of solving this is to check
321     // that the size of both values is smaller than the payload itself.
322     if (metadata_size_ + metadata_signature_size_ > payload_->size) {
323       LOG(ERROR) << "The size of the metadata_size(" << metadata_size_ << ")"
324                  << " or metadata signature(" << metadata_signature_size_ << ")"
325                  << " is greater than the size of the payload" << "("
326                  << payload_->size << ")";
327       *error = ErrorCode::kDownloadInvalidMetadataSize;
328       return MetadataParseResult::kError;
329     }
330   }
331 
332   // Now that we have validated the metadata size, we should wait for the full
333   // metadata and its signature (if exist) to be read in before we can parse it.
334   if (payload.size() < metadata_size_ + metadata_signature_size_)
335     return MetadataParseResult::kInsufficientData;
336 
337   // Log whether we validated the size or simply trusting what's in the payload
338   // here. This is logged here (after we received the full metadata data) so
339   // that we just log once (instead of logging n times) if it takes n
340   // DeltaPerformer::Write calls to download the full manifest.
341   if (payload_->metadata_size == metadata_size_) {
342     LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
343   } else {
344     // For mandatory-cases, we'd have already returned a kMetadataParseError
345     // above. We'll be here only for non-mandatory cases. Just send a UMA stat.
346     LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
347                  << payload_->metadata_size
348                  << ") in Omaha response as validation is not mandatory. "
349                  << "Trusting metadata size in payload = " << metadata_size_;
350   }
351 
352   // NOLINTNEXTLINE(whitespace/braces)
353   auto [payload_verifier, perform_verification] = CreatePayloadVerifier();
354   if (!payload_verifier) {
355     LOG(ERROR) << "Failed to create payload verifier.";
356     *error = ErrorCode::kDownloadMetadataSignatureVerificationError;
357     if (perform_verification) {
358       return MetadataParseResult::kError;
359     }
360   } else {
361     // We have the full metadata in |payload|. Verify its integrity
362     // and authenticity based on the information we have in Omaha response.
363     *error = payload_metadata_.ValidateMetadataSignature(
364         payload, payload_->metadata_signature, *payload_verifier);
365   }
366   if (*error != ErrorCode::kSuccess) {
367     if (install_plan_->hash_checks_mandatory) {
368       // The autoupdate_CatchBadSignatures test checks for this string
369       // in log-files. Keep in sync.
370       LOG(ERROR) << "Mandatory metadata signature validation failed";
371       return MetadataParseResult::kError;
372     }
373 
374     // For non-mandatory cases, just send a UMA stat.
375     LOG(WARNING) << "Ignoring metadata signature validation failures";
376     *error = ErrorCode::kSuccess;
377   }
378 
379   // The payload metadata is deemed valid, it's safe to parse the protobuf.
380   if (!payload_metadata_.GetManifest(payload, &manifest_)) {
381     LOG(ERROR) << "Unable to parse manifest in update file.";
382     *error = ErrorCode::kDownloadManifestParseError;
383     return MetadataParseResult::kError;
384   }
385 
386   manifest_parsed_ = true;
387   return MetadataParseResult::kSuccess;
388 }
389 
390 #define OP_DURATION_HISTOGRAM(_op_name, _start_time)                        \
391   LOCAL_HISTOGRAM_CUSTOM_TIMES(                                             \
392       "UpdateEngine.DownloadAction.InstallOperation::" + string(_op_name) + \
393           ".Duration",                                                      \
394       (base::TimeTicks::Now() - _start_time),                               \
395       base::TimeDelta::FromMilliseconds(10),                                \
396       base::TimeDelta::FromMinutes(5),                                      \
397       20);
398 
CheckSPLDowngrade()399 bool DeltaPerformer::CheckSPLDowngrade() {
400   if (!manifest_.has_security_patch_level()) {
401     return true;
402   }
403   if (manifest_.security_patch_level().empty()) {
404     return true;
405   }
406   const auto new_spl = manifest_.security_patch_level();
407   const auto current_spl =
408       android::base::GetProperty("ro.build.version.security_patch", "");
409   if (current_spl.empty()) {
410     LOG(WARNING) << "Failed to get ro.build.version.security_patch, unable to "
411                     "determine if this OTA is a SPL downgrade. Assuming this "
412                     "OTA is not SPL downgrade.";
413     return true;
414   }
415   if (new_spl < current_spl) {
416     const auto avb_state =
417         android::base::GetProperty("ro.boot.verifiedbootstate", "green");
418     if (android::base::EqualsIgnoreCase(avb_state, "green")) {
419       LOG(ERROR) << "Target build SPL " << new_spl
420                  << " is older than current build's SPL " << current_spl
421                  << ", this OTA is an SPL downgrade. Your device's "
422                     "ro.boot.verifiedbootstate="
423                  << avb_state
424                  << ", it probably has a locked bootlaoder. Since a locked "
425                     "bootloader will reject SPL downgrade no matter what, we "
426                     "will reject this OTA.";
427       return false;
428     }
429     install_plan_->powerwash_required = true;
430     LOG(WARNING)
431         << "Target build SPL " << new_spl
432         << " is older than current build's SPL " << current_spl
433         << ", this OTA is an SPL downgrade. Data wipe will be required";
434   }
435   return true;
436 }
437 
438 // Wrapper around write. Returns true if all requested bytes
439 // were written, or false on any error, regardless of progress
440 // and stores an action exit code in |error|.
Write(const void * bytes,size_t count,ErrorCode * error)441 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode* error) {
442   if (!error) {
443     LOG(INFO) << "Error Code is not initialized";
444     return false;
445   }
446   *error = ErrorCode::kSuccess;
447   const char* c_bytes = reinterpret_cast<const char*>(bytes);
448 
449   // Update the total byte downloaded count and the progress logs.
450   total_bytes_received_ += count;
451   UpdateOverallProgress(false, "Completed ");
452 
453   while (!manifest_valid_) {
454     bool insufficient_bytes = false;
455     if (!ParseManifest(&c_bytes, &count, error, &insufficient_bytes)) {
456       LOG(ERROR) << "Failed to parse manifest";
457       return false;
458     }
459     if (insufficient_bytes) {
460       return true;
461     }
462   }
463 
464   while (next_operation_num_ < num_total_operations_) {
465     // Check if we should cancel the current attempt for any reason.
466     // In this case, *error will have already been populated with the reason
467     // why we're canceling.
468     if (download_delegate_ && download_delegate_->ShouldCancel(error))
469       return false;
470 
471     // We know there are more operations to perform because we didn't reach the
472     // |num_total_operations_| limit yet.
473     if (next_operation_num_ >= acc_num_operations_[current_partition_]) {
474       if (partition_writer_) {
475         if (!partition_writer_->FinishedInstallOps()) {
476           *error = ErrorCode::kDownloadWriteError;
477           return false;
478         }
479       }
480       const auto err = CloseCurrentPartition();
481       if (err < 0) {
482         LOG(ERROR) << "Failed to close partition "
483                    << partitions_[current_partition_].partition_name() << " "
484                    << strerror(-err);
485         return false;
486       }
487       // Skip until there are operations for current_partition_.
488       while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
489         current_partition_++;
490       }
491       if (!OpenCurrentPartition()) {
492         *error = ErrorCode::kInstallDeviceOpenError;
493         return false;
494       }
495     }
496 
497     const InstallOperation& op =
498         partitions_[current_partition_].operations(GetPartitionOperationNum());
499 
500     CopyDataToBuffer(&c_bytes, &count, op.data_length());
501 
502     // Check whether we received all of the next operation's data payload.
503     if (!CanPerformInstallOperation(op))
504       return true;
505     if (!ProcessOperation(&op, error)) {
506       LOG(ERROR) << "unable to process operation: "
507                  << InstallOperationTypeName(op.type())
508                  << " Error: " << utils::ErrorCodeToString(*error);
509       return false;
510     }
511 
512     next_operation_num_++;
513     UpdateOverallProgress(false, "Completed ");
514     CheckpointUpdateProgress(false);
515   }
516 
517   if (partition_writer_) {
518     TEST_AND_RETURN_FALSE(partition_writer_->FinishedInstallOps());
519   }
520   CloseCurrentPartition();
521 
522   // In major version 2, we don't add unused operation to the payload.
523   // If we already extracted the signature we should skip this step.
524   if (manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
525       signatures_message_data_.empty()) {
526     if (manifest_.signatures_offset() != buffer_offset_) {
527       LOG(ERROR) << "Payload signatures offset points to blob offset "
528                  << manifest_.signatures_offset()
529                  << " but signatures are expected at offset " << buffer_offset_;
530       *error = ErrorCode::kDownloadPayloadVerificationError;
531       return false;
532     }
533     CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
534     // Needs more data to cover entire signature.
535     if (buffer_.size() < manifest_.signatures_size())
536       return true;
537     if (!ExtractSignatureMessage()) {
538       LOG(ERROR) << "Extract payload signature failed.";
539       *error = ErrorCode::kDownloadPayloadVerificationError;
540       return false;
541     }
542     DiscardBuffer(true, 0);
543     // Since we extracted the SignatureMessage we need to advance the
544     // checkpoint, otherwise we would reload the signature and try to extract
545     // it again.
546     // This is the last checkpoint for an update, force this checkpoint to be
547     // saved.
548     CheckpointUpdateProgress(true);
549   }
550 
551   return true;
552 }
553 
ParseManifest(const char ** c_bytes,size_t * count,ErrorCode * error,bool * should_return)554 bool DeltaPerformer::ParseManifest(const char** c_bytes,
555                                    size_t* count,
556                                    ErrorCode* error,
557                                    bool* should_return) {
558   // Read data up to the needed limit; this is either maximium payload header
559   // size, or the full metadata size (once it becomes known).
560   const bool do_read_header = !IsHeaderParsed();
561   CopyDataToBuffer(
562       c_bytes,
563       count,
564       (do_read_header ? kMaxPayloadHeaderSize
565                       : metadata_size_ + metadata_signature_size_));
566   MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
567   if (result == MetadataParseResult::kError)
568     return false;
569   if (result == MetadataParseResult::kInsufficientData) {
570     // If we just processed the header, make an attempt on the manifest.
571     if (do_read_header && IsHeaderParsed()) {
572       return true;
573     }
574     *should_return = true;
575     return true;
576   }
577 
578   // Checks the integrity of the payload manifest.
579   if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
580     return false;
581   manifest_valid_ = true;
582   if (!install_plan_->is_resume) {
583     auto begin = reinterpret_cast<const char*>(buffer_.data());
584     prefs_->SetString(kPrefsManifestBytes, {begin, buffer_.size()});
585   }
586 
587   // Clear the download buffer.
588   DiscardBuffer(false, metadata_size_);
589 
590   block_size_ = manifest_.block_size();
591 
592   if (!install_plan_->spl_downgrade && !CheckSPLDowngrade()) {
593     *error = ErrorCode::kPayloadTimestampError;
594     return false;
595   }
596 
597   // update estimate_cow_size if VABC is disabled
598   // new_cow_size per partition = partition_size - (#blocks in Copy
599   // operations part of the partition)
600   if (install_plan_->vabc_none) {
601     LOG(INFO) << "Setting Virtual AB Compression algorithm to none. This "
602                  "would also disable VABC XOR as XOR only saves space if "
603                  "compression is enabled.";
604     manifest_.mutable_dynamic_partition_metadata()->set_vabc_compression_param(
605         "none");
606     for (auto& partition : *manifest_.mutable_partitions()) {
607       if (!partition.has_estimate_cow_size()) {
608         continue;
609       }
610       auto new_cow_size = partition.new_partition_info().size();
611       for (const auto& operation : partition.merge_operations()) {
612         if (operation.type() == CowMergeOperation::COW_COPY) {
613           new_cow_size -=
614               operation.dst_extent().num_blocks() * manifest_.block_size();
615         }
616       }
617       // Remove all COW_XOR merge ops, as XOR without compression is useless.
618       // It increases CPU usage but does not reduce space usage at all.
619       auto&& merge_ops = *partition.mutable_merge_operations();
620       merge_ops.erase(std::remove_if(merge_ops.begin(),
621                                      merge_ops.end(),
622                                      [](const auto& op) {
623                                        return op.type() ==
624                                               CowMergeOperation::COW_XOR;
625                                      }),
626                       merge_ops.end());
627 
628       // Every block written to COW device will come with a header which
629       // stores src/dst block info along with other data.
630       const auto cow_metadata_size = partition.new_partition_info().size() /
631                                      manifest_.block_size() *
632                                      sizeof(android::snapshot::CowOperation);
633       // update_engine will emit a label op every op or every two seconds,
634       // whichever one is longer. In the worst case, we add 1 label per
635       // InstallOp. So take size of label ops into account.
636       const auto label_ops_size =
637           partition.operations_size() * sizeof(android::snapshot::CowOperation);
638       // Adding extra 2MB headroom just for any unexpected space usage.
639       // If we overrun reserved COW size, entire OTA will fail
640       // and no way for user to retry OTA
641       partition.set_estimate_cow_size(new_cow_size + (1024 * 1024 * 2) +
642                                       cow_metadata_size + label_ops_size);
643       // Setting op count max to 0 will defer to num_blocks as the op buffer
644       // size.
645       partition.set_estimate_op_count_max(0);
646       LOG(INFO) << "New COW size for partition " << partition.partition_name()
647                 << " is " << partition.estimate_cow_size();
648     }
649   }
650   if (install_plan_->disable_vabc) {
651     manifest_.mutable_dynamic_partition_metadata()->set_vabc_enabled(false);
652   }
653   if (install_plan_->enable_threading) {
654     manifest_.mutable_dynamic_partition_metadata()
655         ->mutable_vabc_feature_set()
656         ->set_threaded(install_plan_->enable_threading.value());
657     LOG(INFO) << "Attempting to "
658               << (install_plan_->enable_threading.value() ? "enable"
659                                                           : "disable")
660               << " multi-threaded compression for VABC";
661   }
662   if (install_plan_->batched_writes) {
663     manifest_.mutable_dynamic_partition_metadata()
664         ->mutable_vabc_feature_set()
665         ->set_batch_writes(true);
666     LOG(INFO) << "Attempting to enable batched writes for VABC";
667   }
668 
669   // This populates |partitions_| and the |install_plan.partitions| with the
670   // list of partitions from the manifest.
671   if (!ParseManifestPartitions(error))
672     return false;
673 
674   // |install_plan.partitions| was filled in, nothing need to be done here if
675   // the payload was already applied, returns false to terminate http fetcher,
676   // but keep |error| as ErrorCode::kSuccess.
677   if (payload_->already_applied)
678     return false;
679 
680   num_total_operations_ = 0;
681   for (const auto& partition : partitions_) {
682     num_total_operations_ += partition.operations_size();
683     acc_num_operations_.push_back(num_total_operations_);
684   }
685 
686   LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize, metadata_size_))
687       << "Unable to save the manifest metadata size.";
688   LOG_IF(
689       WARNING,
690       !prefs_->SetInt64(kPrefsManifestSignatureSize, metadata_signature_size_))
691       << "Unable to save the manifest signature size.";
692 
693   if (!PrimeUpdateState()) {
694     *error = ErrorCode::kDownloadStateInitializationError;
695     LOG(ERROR) << "Unable to prime the update state.";
696     return false;
697   }
698 
699   if (next_operation_num_ < acc_num_operations_[current_partition_]) {
700     if (!OpenCurrentPartition()) {
701       *error = ErrorCode::kInstallDeviceOpenError;
702       return false;
703     }
704   }
705 
706   if (next_operation_num_ > 0)
707     UpdateOverallProgress(true, "Resuming after ");
708   LOG(INFO) << "Starting to apply update payload operations";
709   return true;
710 }
ProcessOperation(const InstallOperation * op,ErrorCode * error)711 bool DeltaPerformer::ProcessOperation(const InstallOperation* op,
712                                       ErrorCode* error) {
713   // Validate the operation unconditionally. This helps prevent the
714   // exploitation of vulnerabilities in the patching libraries, e.g. bspatch.
715   // The hash of the patch data for a given operation is embedded in the
716   // payload metadata; and thus has been verified against the public key on
717   // device.
718   // Note: Validate must be called only if CanPerformInstallOperation is
719   // called. Otherwise, we might be failing operations before even if there
720   // isn't sufficient data to compute the proper hash.
721   *error = ValidateOperationHash(*op);
722   if (*error != ErrorCode::kSuccess) {
723     if (install_plan_->hash_checks_mandatory) {
724       LOG(ERROR) << "Mandatory operation hash check failed";
725       return false;
726     }
727 
728     // For non-mandatory cases, just send a UMA stat.
729     LOG(WARNING) << "Ignoring operation validation errors";
730     *error = ErrorCode::kSuccess;
731   }
732 
733   // Makes sure we unblock exit when this operation completes.
734   ScopedTerminatorExitUnblocker exit_unblocker =
735       ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug.
736 
737   base::TimeTicks op_start_time = base::TimeTicks::Now();
738 
739   bool op_result{};
740   const string op_name = InstallOperationTypeName(op->type());
741   switch (op->type()) {
742     case InstallOperation::REPLACE:
743     case InstallOperation::REPLACE_BZ:
744     case InstallOperation::REPLACE_XZ:
745       op_result = PerformReplaceOperation(*op);
746       OP_DURATION_HISTOGRAM("REPLACE", op_start_time);
747       break;
748     case InstallOperation::ZERO:
749     case InstallOperation::DISCARD:
750       op_result = PerformZeroOrDiscardOperation(*op);
751       OP_DURATION_HISTOGRAM("ZERO_OR_DISCARD", op_start_time);
752       break;
753     case InstallOperation::SOURCE_COPY:
754       op_result = PerformSourceCopyOperation(*op, error);
755       OP_DURATION_HISTOGRAM("SOURCE_COPY", op_start_time);
756       break;
757     case InstallOperation::SOURCE_BSDIFF:
758     case InstallOperation::BROTLI_BSDIFF:
759     case InstallOperation::PUFFDIFF:
760     case InstallOperation::ZUCCHINI:
761     case InstallOperation::LZ4DIFF_PUFFDIFF:
762     case InstallOperation::LZ4DIFF_BSDIFF:
763       op_result = PerformDiffOperation(*op, error);
764       OP_DURATION_HISTOGRAM(op_name, op_start_time);
765       break;
766     default:
767       op_result = false;
768   }
769   if (!HandleOpResult(op_result, op_name.c_str(), error))
770     return false;
771 
772   return true;
773 }
774 
IsManifestValid()775 bool DeltaPerformer::IsManifestValid() {
776   return manifest_valid_;
777 }
778 
ParseManifestPartitions(ErrorCode * error)779 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
780   partitions_.assign(manifest_.partitions().begin(),
781                      manifest_.partitions().end());
782 
783   // For VAB and partial updates, the partition preparation will copy the
784   // dynamic partitions metadata to the target metadata slot, and rename the
785   // slot suffix of the partitions in the metadata.
786   if (install_plan_->target_slot != BootControlInterface::kInvalidSlot) {
787     uint64_t required_size = 0;
788     if (!PreparePartitionsForUpdate(&required_size, error)) {
789       if (*error == ErrorCode::kOverlayfsenabledError) {
790         return false;
791       } else if (required_size > 0) {
792         *error = ErrorCode::kNotEnoughSpace;
793       } else {
794         *error = ErrorCode::kInstallDeviceOpenError;
795       }
796       return false;
797     }
798   }
799 
800   // Partitions in manifest are no longer needed after preparing partitions.
801   manifest_.clear_partitions();
802   // TODO(xunchang) TBD: allow partial update only on devices with dynamic
803   // partition.
804   if (manifest_.partial_update()) {
805     std::set<std::string> touched_partitions;
806     for (const auto& partition_update : partitions_) {
807       touched_partitions.insert(partition_update.partition_name());
808     }
809 
810     auto generator = partition_update_generator::Create(boot_control_,
811                                                         manifest_.block_size());
812     std::vector<PartitionUpdate> untouched_static_partitions;
813     if (!generator->GenerateOperationsForPartitionsNotInPayload(
814             install_plan_->source_slot,
815             install_plan_->target_slot,
816             touched_partitions,
817             &untouched_static_partitions)) {
818       LOG(ERROR)
819           << "Failed to generate operations for partitions not in payload "
820           << android::base::Join(touched_partitions, ", ");
821       *error = ErrorCode::kDownloadStateInitializationError;
822       return false;
823     }
824     partitions_.insert(partitions_.end(),
825                        untouched_static_partitions.begin(),
826                        untouched_static_partitions.end());
827 
828     // Save the untouched dynamic partitions in install plan.
829     std::vector<std::string> dynamic_partitions;
830     if (!boot_control_->GetDynamicPartitionControl()
831              ->ListDynamicPartitionsForSlot(install_plan_->source_slot,
832                                             boot_control_->GetCurrentSlot(),
833                                             &dynamic_partitions)) {
834       LOG(ERROR) << "Failed to load dynamic partitions from slot "
835                  << install_plan_->source_slot;
836       return false;
837     }
838     install_plan_->untouched_dynamic_partitions.clear();
839     for (const auto& name : dynamic_partitions) {
840       if (touched_partitions.find(name) == touched_partitions.end()) {
841         install_plan_->untouched_dynamic_partitions.push_back(name);
842       }
843     }
844   }
845 
846   const auto start = std::chrono::system_clock::now();
847   if (!install_plan_->ParsePartitions(
848           partitions_, boot_control_, block_size_, error)) {
849     return false;
850   }
851   const auto duration = std::chrono::system_clock::now() - start;
852   LOG(INFO)
853       << "ParsePartitions done. took "
854       << std::chrono::duration_cast<std::chrono::milliseconds>(duration).count()
855       << " ms";
856 
857   auto&& has_verity = [](const auto& part) {
858     return part.fec_extent().num_blocks() > 0 ||
859            part.hash_tree_extent().num_blocks() > 0;
860   };
861   if (!std::any_of(partitions_.begin(), partitions_.end(), has_verity)) {
862     install_plan_->write_verity = false;
863   }
864 
865   LogPartitionInfo(partitions_);
866   return true;
867 }
868 
PreparePartitionsForUpdate(uint64_t * required_size,ErrorCode * error)869 bool DeltaPerformer::PreparePartitionsForUpdate(uint64_t* required_size,
870                                                 ErrorCode* error) {
871   // Call static PreparePartitionsForUpdate with hash from
872   // kPrefsUpdateCheckResponseHash to ensure hash of payload that space is
873   // preallocated for is the same as the hash of payload being applied.
874   string update_check_response_hash;
875   ignore_result(prefs_->GetString(kPrefsUpdateCheckResponseHash,
876                                   &update_check_response_hash));
877   return PreparePartitionsForUpdate(prefs_,
878                                     boot_control_,
879                                     install_plan_->target_slot,
880                                     manifest_,
881                                     update_check_response_hash,
882                                     required_size,
883                                     error);
884 }
885 
PreparePartitionsForUpdate(PrefsInterface * prefs,BootControlInterface * boot_control,BootControlInterface::Slot target_slot,const DeltaArchiveManifest & manifest,const std::string & update_check_response_hash,uint64_t * required_size,ErrorCode * error)886 bool DeltaPerformer::PreparePartitionsForUpdate(
887     PrefsInterface* prefs,
888     BootControlInterface* boot_control,
889     BootControlInterface::Slot target_slot,
890     const DeltaArchiveManifest& manifest,
891     const std::string& update_check_response_hash,
892     uint64_t* required_size,
893     ErrorCode* error) {
894   string last_hash;
895   ignore_result(
896       prefs->GetString(kPrefsDynamicPartitionMetadataUpdated, &last_hash));
897 
898   bool is_resume = !update_check_response_hash.empty() &&
899                    last_hash == update_check_response_hash;
900 
901   if (is_resume) {
902     LOG(INFO) << "Using previously prepared partitions for update. hash = "
903               << last_hash;
904   } else {
905     LOG(INFO) << "Preparing partitions for new update. last hash = "
906               << last_hash << ", new hash = " << update_check_response_hash;
907     ResetUpdateProgress(prefs, false);
908   }
909 
910   const auto start = std::chrono::system_clock::now();
911   if (!boot_control->GetDynamicPartitionControl()->PreparePartitionsForUpdate(
912           boot_control->GetCurrentSlot(),
913           target_slot,
914           manifest,
915           !is_resume /* should update */,
916           required_size,
917           error)) {
918     LOG(ERROR) << "Unable to initialize partition metadata for slot "
919                << BootControlInterface::SlotName(target_slot) << " "
920                << utils::ErrorCodeToString(*error);
921     return false;
922   }
923   const auto duration = std::chrono::system_clock::now() - start;
924 
925   TEST_AND_RETURN_FALSE(prefs->SetString(kPrefsDynamicPartitionMetadataUpdated,
926                                          update_check_response_hash));
927   LOG(INFO)
928       << "PreparePartitionsForUpdate done. took "
929       << std::chrono::duration_cast<std::chrono::milliseconds>(duration).count()
930       << " ms";
931 
932   return true;
933 }
934 
CanPerformInstallOperation(const chromeos_update_engine::InstallOperation & operation)935 bool DeltaPerformer::CanPerformInstallOperation(
936     const chromeos_update_engine::InstallOperation& operation) {
937   // If we don't have a data blob we can apply it right away.
938   if (!operation.has_data_offset() && !operation.has_data_length())
939     return true;
940 
941   // See if we have the entire data blob in the buffer
942   if (operation.data_offset() < buffer_offset_) {
943     LOG(ERROR) << "we threw away data it seems?";
944     return false;
945   }
946 
947   return (operation.data_offset() + operation.data_length() <=
948           buffer_offset_ + buffer_.size());
949 }
950 
PerformReplaceOperation(const InstallOperation & operation)951 bool DeltaPerformer::PerformReplaceOperation(
952     const InstallOperation& operation) {
953   CHECK(operation.type() == InstallOperation::REPLACE ||
954         operation.type() == InstallOperation::REPLACE_BZ ||
955         operation.type() == InstallOperation::REPLACE_XZ);
956 
957   // Since we delete data off the beginning of the buffer as we use it,
958   // the data we need should be exactly at the beginning of the buffer.
959   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
960 
961   TEST_AND_RETURN_FALSE(partition_writer_->PerformReplaceOperation(
962       operation, buffer_.data(), buffer_.size()));
963   // Update buffer
964   DiscardBuffer(true, buffer_.size());
965   return true;
966 }
967 
PerformZeroOrDiscardOperation(const InstallOperation & operation)968 bool DeltaPerformer::PerformZeroOrDiscardOperation(
969     const InstallOperation& operation) {
970   CHECK(operation.type() == InstallOperation::DISCARD ||
971         operation.type() == InstallOperation::ZERO);
972 
973   // These operations have no blob.
974   TEST_AND_RETURN_FALSE(!operation.has_data_offset());
975   TEST_AND_RETURN_FALSE(!operation.has_data_length());
976 
977   return partition_writer_->PerformZeroOrDiscardOperation(operation);
978 }
979 
PerformSourceCopyOperation(const InstallOperation & operation,ErrorCode * error)980 bool DeltaPerformer::PerformSourceCopyOperation(
981     const InstallOperation& operation, ErrorCode* error) {
982   if (operation.has_src_length())
983     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
984   if (operation.has_dst_length())
985     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
986   return partition_writer_->PerformSourceCopyOperation(operation, error);
987 }
988 
ExtentsToBsdiffPositionsString(const RepeatedPtrField<Extent> & extents,uint64_t block_size,uint64_t full_length,string * positions_string)989 bool DeltaPerformer::ExtentsToBsdiffPositionsString(
990     const RepeatedPtrField<Extent>& extents,
991     uint64_t block_size,
992     uint64_t full_length,
993     string* positions_string) {
994   string ret;
995   uint64_t length = 0;
996   for (const Extent& extent : extents) {
997     int64_t start = extent.start_block() * block_size;
998     uint64_t this_length =
999         min(full_length - length,
1000             static_cast<uint64_t>(extent.num_blocks()) * block_size);
1001     ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
1002     length += this_length;
1003   }
1004   TEST_AND_RETURN_FALSE(length == full_length);
1005   if (!ret.empty())
1006     ret.resize(ret.size() - 1);  // Strip trailing comma off
1007   *positions_string = ret;
1008   return true;
1009 }
1010 
PerformDiffOperation(const InstallOperation & operation,ErrorCode * error)1011 bool DeltaPerformer::PerformDiffOperation(const InstallOperation& operation,
1012                                           ErrorCode* error) {
1013   // Since we delete data off the beginning of the buffer as we use it,
1014   // the data we need should be exactly at the beginning of the buffer.
1015   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1016   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1017   if (operation.has_src_length())
1018     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1019   if (operation.has_dst_length())
1020     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1021 
1022   TEST_AND_RETURN_FALSE(partition_writer_->PerformDiffOperation(
1023       operation, error, buffer_.data(), buffer_.size()));
1024   DiscardBuffer(true, buffer_.size());
1025   return true;
1026 }
1027 
ExtractSignatureMessage()1028 bool DeltaPerformer::ExtractSignatureMessage() {
1029   TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
1030   TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
1031   TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
1032   signatures_message_data_.assign(
1033       buffer_.begin(), buffer_.begin() + manifest_.signatures_size());
1034 
1035   LOG(INFO) << "Extracted signature data of size "
1036             << manifest_.signatures_size() << " at "
1037             << manifest_.signatures_offset();
1038   return true;
1039 }
1040 
GetPublicKey(string * out_public_key)1041 bool DeltaPerformer::GetPublicKey(string* out_public_key) {
1042   out_public_key->clear();
1043 
1044   if (utils::FileExists(public_key_path_.c_str())) {
1045     LOG(INFO) << "Verifying using public key: " << public_key_path_;
1046     return utils::ReadFile(public_key_path_, out_public_key);
1047   }
1048 
1049   // If this is an official build then we are not allowed to use public key
1050   // from Omaha response.
1051   if (!hardware_->IsOfficialBuild() && !install_plan_->public_key_rsa.empty()) {
1052     LOG(INFO) << "Verifying using public key from Omaha response.";
1053     return brillo::data_encoding::Base64Decode(install_plan_->public_key_rsa,
1054                                                out_public_key);
1055   }
1056   LOG(INFO) << "No public keys found for verification.";
1057   return true;
1058 }
1059 
1060 std::pair<std::unique_ptr<PayloadVerifier>, bool>
CreatePayloadVerifier()1061 DeltaPerformer::CreatePayloadVerifier() {
1062   if (utils::FileExists(update_certificates_path_.c_str())) {
1063     LOG(INFO) << "Verifying using certificates: " << update_certificates_path_;
1064     return {
1065         PayloadVerifier::CreateInstanceFromZipPath(update_certificates_path_),
1066         true};
1067   }
1068 
1069   string public_key;
1070   if (!GetPublicKey(&public_key)) {
1071     LOG(ERROR) << "Failed to read public key";
1072     return {nullptr, true};
1073   }
1074 
1075   // Skips the verification if the public key is empty.
1076   if (public_key.empty()) {
1077     return {nullptr, false};
1078   }
1079   LOG(INFO) << "Verifing using public key: " << public_key;
1080   return {PayloadVerifier::CreateInstance(public_key), true};
1081 }
1082 
ValidateManifest()1083 ErrorCode DeltaPerformer::ValidateManifest() {
1084   // Perform assorted checks to validation check the manifest, make sure it
1085   // matches data from other sources, and that it is a supported version.
1086   bool has_old_fields = std::any_of(manifest_.partitions().begin(),
1087                                     manifest_.partitions().end(),
1088                                     [](const PartitionUpdate& partition) {
1089                                       return partition.has_old_partition_info();
1090                                     });
1091 
1092   // The presence of an old partition hash is the sole indicator for a delta
1093   // update. Also, always treat the partial update as delta so that we can
1094   // perform the minor version check correctly.
1095   InstallPayloadType actual_payload_type =
1096       (has_old_fields || manifest_.partial_update())
1097           ? InstallPayloadType::kDelta
1098           : InstallPayloadType::kFull;
1099 
1100   if (payload_->type == InstallPayloadType::kUnknown) {
1101     LOG(INFO) << "Detected a '"
1102               << InstallPayloadTypeToString(actual_payload_type)
1103               << "' payload.";
1104     payload_->type = actual_payload_type;
1105   } else if (payload_->type != actual_payload_type) {
1106     LOG(ERROR) << "InstallPlan expected a '"
1107                << InstallPayloadTypeToString(payload_->type)
1108                << "' payload but the downloaded manifest contains a '"
1109                << InstallPayloadTypeToString(actual_payload_type)
1110                << "' payload.";
1111     return ErrorCode::kPayloadMismatchedType;
1112   }
1113   // Check that the minor version is compatible.
1114   // TODO(xunchang) increment minor version & add check for partial update
1115   if (actual_payload_type == InstallPayloadType::kFull) {
1116     if (manifest_.minor_version() != kFullPayloadMinorVersion) {
1117       LOG(ERROR) << "Manifest contains minor version "
1118                  << manifest_.minor_version()
1119                  << ", but all full payloads should have version "
1120                  << kFullPayloadMinorVersion << ".";
1121       return ErrorCode::kUnsupportedMinorPayloadVersion;
1122     }
1123   } else {
1124     if (manifest_.minor_version() < kMinSupportedMinorPayloadVersion ||
1125         manifest_.minor_version() > kMaxSupportedMinorPayloadVersion) {
1126       LOG(ERROR) << "Manifest contains minor version "
1127                  << manifest_.minor_version()
1128                  << " not in the range of supported minor versions ["
1129                  << kMinSupportedMinorPayloadVersion << ", "
1130                  << kMaxSupportedMinorPayloadVersion << "].";
1131       return ErrorCode::kUnsupportedMinorPayloadVersion;
1132     }
1133   }
1134 
1135   ErrorCode error_code = CheckTimestampError();
1136   if (error_code != ErrorCode::kSuccess) {
1137     if (error_code == ErrorCode::kPayloadTimestampError) {
1138       if (!hardware_->AllowDowngrade()) {
1139         return ErrorCode::kPayloadTimestampError;
1140       }
1141       LOG(INFO) << "The current OS build allows downgrade, continuing to apply"
1142                    " the payload with an older timestamp.";
1143     } else {
1144       LOG(ERROR) << "Timestamp check returned "
1145                  << utils::ErrorCodeToString(error_code);
1146       return error_code;
1147     }
1148   }
1149 
1150   // TODO(crbug.com/37661) we should be adding more and more manifest checks,
1151   // such as partition boundaries, etc.
1152 
1153   return ErrorCode::kSuccess;
1154 }
1155 
CheckTimestampError() const1156 ErrorCode DeltaPerformer::CheckTimestampError() const {
1157   bool is_partial_update =
1158       manifest_.has_partial_update() && manifest_.partial_update();
1159   const auto& partitions = manifest_.partitions();
1160 
1161   // Check version field for a given PartitionUpdate object. If an error
1162   // is encountered, set |error_code| accordingly. If downgrade is detected,
1163   // |downgrade_detected| is set. Return true if the program should continue
1164   // to check the next partition or not, or false if it should exit early due
1165   // to errors.
1166   auto&& timestamp_valid = [this](const PartitionUpdate& partition,
1167                                   bool allow_empty_version,
1168                                   bool* downgrade_detected) -> ErrorCode {
1169     const auto& partition_name = partition.partition_name();
1170     if (!partition.has_version()) {
1171       if (hardware_->GetVersionForLogging(partition_name).empty()) {
1172         LOG(INFO) << partition_name << " does't have version, skipping "
1173                   << "downgrade check.";
1174         return ErrorCode::kSuccess;
1175       }
1176 
1177       if (allow_empty_version) {
1178         return ErrorCode::kSuccess;
1179       }
1180       LOG(ERROR)
1181           << "PartitionUpdate " << partition_name
1182           << " doesn't have a version field. Not allowed in partial updates.";
1183       return ErrorCode::kDownloadManifestParseError;
1184     }
1185 
1186     auto error_code =
1187         hardware_->IsPartitionUpdateValid(partition_name, partition.version());
1188     switch (error_code) {
1189       case ErrorCode::kSuccess:
1190         break;
1191       case ErrorCode::kPayloadTimestampError:
1192         *downgrade_detected = true;
1193         LOG(WARNING) << "PartitionUpdate " << partition_name
1194                      << " has an older version than partition on device.";
1195         break;
1196       default:
1197         LOG(ERROR) << "IsPartitionUpdateValid(" << partition_name
1198                    << ") returned" << utils::ErrorCodeToString(error_code);
1199         break;
1200     }
1201     return error_code;
1202   };
1203 
1204   bool downgrade_detected = false;
1205 
1206   if (is_partial_update) {
1207     // for partial updates, all partition MUST have valid timestamps
1208     // But max_timestamp can be empty
1209     for (const auto& partition : partitions) {
1210       auto error_code = timestamp_valid(
1211           partition, false /* allow_empty_version */, &downgrade_detected);
1212       if (error_code != ErrorCode::kSuccess &&
1213           error_code != ErrorCode::kPayloadTimestampError) {
1214         return error_code;
1215       }
1216     }
1217     if (downgrade_detected) {
1218       return ErrorCode::kPayloadTimestampError;
1219     }
1220     return ErrorCode::kSuccess;
1221   }
1222 
1223   // For non-partial updates, check max_timestamp first.
1224   if (manifest_.max_timestamp() < hardware_->GetBuildTimestamp()) {
1225     LOG(ERROR) << "The current OS build timestamp ("
1226                << hardware_->GetBuildTimestamp()
1227                << ") is newer than the maximum timestamp in the manifest ("
1228                << manifest_.max_timestamp() << ")";
1229     return ErrorCode::kPayloadTimestampError;
1230   }
1231   // Otherwise... partitions can have empty timestamps.
1232   for (const auto& partition : partitions) {
1233     auto error_code = timestamp_valid(
1234         partition, true /* allow_empty_version */, &downgrade_detected);
1235     if (error_code != ErrorCode::kSuccess &&
1236         error_code != ErrorCode::kPayloadTimestampError) {
1237       return error_code;
1238     }
1239   }
1240   if (downgrade_detected) {
1241     return ErrorCode::kPayloadTimestampError;
1242   }
1243   return ErrorCode::kSuccess;
1244 }
1245 
ValidateOperationHash(const InstallOperation & operation)1246 ErrorCode DeltaPerformer::ValidateOperationHash(
1247     const InstallOperation& operation) {
1248   if (!operation.data_sha256_hash().size()) {
1249     if (!operation.data_length()) {
1250       // Operations that do not have any data blob won't have any operation
1251       // hash either. So, these operations are always considered validated
1252       // since the metadata that contains all the non-data-blob portions of
1253       // the operation has already been validated. This is true for both HTTP
1254       // and HTTPS cases.
1255       return ErrorCode::kSuccess;
1256     }
1257 
1258     // No hash is present for an operation that has data blobs. This shouldn't
1259     // happen normally for any client that has this code, because the
1260     // corresponding update should have been produced with the operation
1261     // hashes. So if it happens it means either we've turned operation hash
1262     // generation off in DeltaDiffGenerator or it's a regression of some sort.
1263     // One caveat though: The last operation is a unused signature operation
1264     // that doesn't have a hash at the time the manifest is created. So we
1265     // should not complaint about that operation. This operation can be
1266     // recognized by the fact that it's offset is mentioned in the manifest.
1267     if (manifest_.signatures_offset() &&
1268         manifest_.signatures_offset() == operation.data_offset()) {
1269       LOG(INFO) << "Skipping hash verification for signature operation "
1270                 << next_operation_num_ + 1;
1271     } else {
1272       if (install_plan_->hash_checks_mandatory) {
1273         LOG(ERROR) << "Missing mandatory operation hash for operation "
1274                    << next_operation_num_ + 1;
1275         return ErrorCode::kDownloadOperationHashMissingError;
1276       }
1277 
1278       LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
1279                    << " as there's no operation hash in manifest";
1280     }
1281     return ErrorCode::kSuccess;
1282   }
1283 
1284   brillo::Blob expected_op_hash;
1285   expected_op_hash.assign(operation.data_sha256_hash().data(),
1286                           (operation.data_sha256_hash().data() +
1287                            operation.data_sha256_hash().size()));
1288 
1289   brillo::Blob calculated_op_hash;
1290   if (!HashCalculator::RawHashOfBytes(
1291           buffer_.data(), operation.data_length(), &calculated_op_hash)) {
1292     LOG(ERROR) << "Unable to compute actual hash of operation "
1293                << next_operation_num_;
1294     return ErrorCode::kDownloadOperationHashVerificationError;
1295   }
1296 
1297   if (calculated_op_hash != expected_op_hash) {
1298     LOG(ERROR) << "Hash verification failed for operation "
1299                << next_operation_num_
1300                << ". Expected hash = " << HexEncode(expected_op_hash);
1301     LOG(ERROR) << "Calculated hash over " << operation.data_length()
1302                << " bytes at offset: " << operation.data_offset() << " = "
1303                << HexEncode(calculated_op_hash);
1304     return ErrorCode::kDownloadOperationHashMismatch;
1305   }
1306 
1307   return ErrorCode::kSuccess;
1308 }
1309 
1310 #define TEST_AND_RETURN_VAL(_retval, _condition)              \
1311   do {                                                        \
1312     if (!(_condition)) {                                      \
1313       LOG(ERROR) << "VerifyPayload failure: " << #_condition; \
1314       return _retval;                                         \
1315     }                                                         \
1316   } while (0);
1317 
VerifyPayload(const brillo::Blob & update_check_response_hash,const uint64_t update_check_response_size)1318 ErrorCode DeltaPerformer::VerifyPayload(
1319     const brillo::Blob& update_check_response_hash,
1320     const uint64_t update_check_response_size) {
1321   // Verifies the download size.
1322   if (update_check_response_size !=
1323       metadata_size_ + metadata_signature_size_ + buffer_offset_) {
1324     LOG(ERROR) << "update_check_response_size (" << update_check_response_size
1325                << ") doesn't match metadata_size (" << metadata_size_
1326                << ") + metadata_signature_size (" << metadata_signature_size_
1327                << ") + buffer_offset (" << buffer_offset_ << ").";
1328     return ErrorCode::kPayloadSizeMismatchError;
1329   }
1330 
1331   // Verifies the payload hash.
1332   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
1333                       !payload_hash_calculator_.raw_hash().empty());
1334   if (payload_hash_calculator_.raw_hash() != update_check_response_hash) {
1335     LOG(ERROR) << "Actual hash: "
1336                << HexEncode(payload_hash_calculator_.raw_hash())
1337                << ", expected hash: " << HexEncode(update_check_response_hash);
1338     return ErrorCode::kPayloadHashMismatchError;
1339   }
1340 
1341   // NOLINTNEXTLINE(whitespace/braces)
1342   auto [payload_verifier, perform_verification] = CreatePayloadVerifier();
1343   if (!perform_verification) {
1344     LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
1345     return ErrorCode::kSuccess;
1346   }
1347   if (!payload_verifier) {
1348     LOG(ERROR) << "Failed to create the payload verifier.";
1349     return ErrorCode::kDownloadPayloadPubKeyVerificationError;
1350   }
1351 
1352   TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
1353                       !signatures_message_data_.empty());
1354   brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
1355   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1356                       hash_data.size() == kSHA256Size);
1357 
1358   if (!payload_verifier->VerifySignature(signatures_message_data_, hash_data)) {
1359     // The autoupdate_CatchBadSignatures test checks for this string
1360     // in log-files. Keep in sync.
1361     LOG(ERROR) << "Public key verification failed, thus update failed.";
1362     return ErrorCode::kDownloadPayloadPubKeyVerificationError;
1363   }
1364 
1365   LOG(INFO) << "Payload hash matches value in payload.";
1366   return ErrorCode::kSuccess;
1367 }
1368 
DiscardBuffer(bool do_advance_offset,size_t signed_hash_buffer_size)1369 void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
1370                                    size_t signed_hash_buffer_size) {
1371   // Update the buffer offset.
1372   if (do_advance_offset)
1373     buffer_offset_ += buffer_.size();
1374 
1375   // Hash the content.
1376   payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
1377   signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
1378 
1379   // Swap content with an empty vector to ensure that all memory is released.
1380   brillo::Blob().swap(buffer_);
1381 }
1382 
CanResumeUpdate(PrefsInterface * prefs,const string & update_check_response_hash)1383 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
1384                                      const string& update_check_response_hash) {
1385   int64_t next_operation = kUpdateStateOperationInvalid;
1386   if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
1387         next_operation != kUpdateStateOperationInvalid && next_operation > 0)) {
1388     LOG(WARNING) << "Failed to resume update " << kPrefsUpdateStateNextOperation
1389                  << " invalid: " << next_operation;
1390     return false;
1391   }
1392 
1393   string interrupted_hash;
1394   if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
1395         !interrupted_hash.empty() &&
1396         interrupted_hash == update_check_response_hash)) {
1397     LOG(WARNING) << "Failed to resume update " << kPrefsUpdateCheckResponseHash
1398                  << " mismatch, last hash: " << interrupted_hash
1399                  << ", current hash: " << update_check_response_hash << "";
1400     return false;
1401   }
1402 
1403   int64_t resumed_update_failures{};
1404   // Note that storing this value is optional, but if it is there it should
1405   // not be more than the limit.
1406   if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
1407       resumed_update_failures > kMaxResumedUpdateFailures) {
1408     LOG(WARNING) << "Failed to resume update " << kPrefsResumedUpdateFailures
1409                  << " has value " << resumed_update_failures
1410                  << " is over the limit " << kMaxResumedUpdateFailures;
1411     return false;
1412   }
1413 
1414   // Validation check the rest.
1415   int64_t next_data_offset = -1;
1416   if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
1417         next_data_offset >= 0)) {
1418     LOG(WARNING) << "Failed to resume update "
1419                  << kPrefsUpdateStateNextDataOffset
1420                  << " invalid: " << next_data_offset;
1421     return false;
1422   }
1423 
1424   string sha256_context;
1425   if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
1426         !sha256_context.empty())) {
1427     LOG(WARNING) << "Failed to resume update " << kPrefsUpdateStateSHA256Context
1428                  << " is empty.";
1429     return false;
1430   }
1431 
1432   int64_t manifest_metadata_size = 0;
1433   if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
1434         manifest_metadata_size > 0)) {
1435     LOG(WARNING) << "Failed to resume update " << kPrefsManifestMetadataSize
1436                  << " invalid: " << manifest_metadata_size;
1437     return false;
1438   }
1439 
1440   int64_t manifest_signature_size = 0;
1441   if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
1442                         &manifest_signature_size) &&
1443         manifest_signature_size >= 0)) {
1444     LOG(WARNING) << "Failed to resume update " << kPrefsManifestSignatureSize
1445                  << " invalid: " << manifest_signature_size;
1446     return false;
1447   }
1448 
1449   return true;
1450 }
1451 
ResetUpdateProgress(PrefsInterface * prefs,bool quick,bool skip_dynamic_partititon_metadata_updated)1452 bool DeltaPerformer::ResetUpdateProgress(
1453     PrefsInterface* prefs,
1454     bool quick,
1455     bool skip_dynamic_partititon_metadata_updated) {
1456   TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
1457                                         kUpdateStateOperationInvalid));
1458   if (!quick) {
1459     prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
1460     prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
1461     prefs->SetString(kPrefsUpdateStateSHA256Context, "");
1462     prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
1463     prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
1464     prefs->SetInt64(kPrefsManifestMetadataSize, -1);
1465     prefs->SetInt64(kPrefsManifestSignatureSize, -1);
1466     prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
1467     prefs->Delete(kPrefsPostInstallSucceeded);
1468     prefs->Delete(kPrefsVerityWritten);
1469     if (!skip_dynamic_partititon_metadata_updated) {
1470       LOG(INFO) << "Resetting recorded hash for prepared partitions.";
1471       prefs->Delete(kPrefsDynamicPartitionMetadataUpdated);
1472     }
1473   }
1474   return true;
1475 }
1476 
ShouldCheckpoint()1477 bool DeltaPerformer::ShouldCheckpoint() {
1478   base::TimeTicks curr_time = base::TimeTicks::Now();
1479   if (curr_time > update_checkpoint_time_) {
1480     update_checkpoint_time_ = curr_time + update_checkpoint_wait_;
1481     return true;
1482   }
1483   return false;
1484 }
1485 
CheckpointUpdateProgress(bool force)1486 bool DeltaPerformer::CheckpointUpdateProgress(bool force) {
1487   if (!force && !ShouldCheckpoint()) {
1488     return false;
1489   }
1490   Terminator::set_exit_blocked(true);
1491   LOG_IF(WARNING, !prefs_->StartTransaction())
1492       << "unable to start transaction in checkpointing";
1493   DEFER {
1494     prefs_->CancelTransaction();
1495   };
1496   if (last_updated_operation_num_ != next_operation_num_ || force) {
1497     if (!signatures_message_data_.empty()) {
1498       // Save the signature blob because if the update is interrupted after the
1499       // download phase we don't go through this path anymore. Some alternatives
1500       // to consider:
1501       //
1502       // 1. On resume, re-download the signature blob from the server and
1503       // re-verify it.
1504       //
1505       // 2. Verify the signature as soon as it's received and don't checkpoint
1506       // the blob and the signed sha-256 context.
1507       LOG_IF(WARNING,
1508              !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
1509                                 signatures_message_data_))
1510           << "Unable to store the signature blob.";
1511     }
1512     TEST_AND_RETURN_FALSE(prefs_->SetString(
1513         kPrefsUpdateStateSHA256Context, payload_hash_calculator_.GetContext()));
1514     TEST_AND_RETURN_FALSE(
1515         prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
1516                           signed_hash_calculator_.GetContext()));
1517     TEST_AND_RETURN_FALSE(
1518         prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, buffer_offset_));
1519     last_updated_operation_num_ = next_operation_num_;
1520 
1521     if (next_operation_num_ < num_total_operations_) {
1522       size_t partition_index = current_partition_;
1523       while (next_operation_num_ >= acc_num_operations_[partition_index]) {
1524         partition_index++;
1525       }
1526       const size_t partition_operation_num =
1527           next_operation_num_ -
1528           (partition_index ? acc_num_operations_[partition_index - 1] : 0);
1529       const InstallOperation& op =
1530           partitions_[partition_index].operations(partition_operation_num);
1531       TEST_AND_RETURN_FALSE(
1532           prefs_->SetInt64(kPrefsUpdateStateNextDataLength, op.data_length()));
1533     } else {
1534       TEST_AND_RETURN_FALSE(
1535           prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 0));
1536     }
1537     if (partition_writer_) {
1538       partition_writer_->CheckpointUpdateProgress(GetPartitionOperationNum());
1539     } else {
1540       CHECK_EQ(next_operation_num_, num_total_operations_)
1541           << "Partition writer is null, we are expected to finish all "
1542              "operations: "
1543           << next_operation_num_ << "/" << num_total_operations_;
1544     }
1545   }
1546   TEST_AND_RETURN_FALSE(
1547       prefs_->SetInt64(kPrefsUpdateStateNextOperation, next_operation_num_));
1548   if (!prefs_->SubmitTransaction()) {
1549     LOG(ERROR) << "Failed to submit transaction in checkpointing";
1550   }
1551   return true;
1552 }
1553 
PrimeUpdateState()1554 bool DeltaPerformer::PrimeUpdateState() {
1555   CHECK(manifest_valid_);
1556 
1557   int64_t next_operation = kUpdateStateOperationInvalid;
1558   if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
1559       next_operation == kUpdateStateOperationInvalid || next_operation <= 0) {
1560     // Initiating a new update, no more state needs to be initialized.
1561     return true;
1562   }
1563   next_operation_num_ = next_operation;
1564 
1565   // Resuming an update -- load the rest of the update state.
1566   int64_t next_data_offset = -1;
1567   TEST_AND_RETURN_FALSE(
1568       prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
1569       next_data_offset >= 0);
1570   buffer_offset_ = next_data_offset;
1571 
1572   // The signed hash context and the signature blob may be empty if the
1573   // interrupted update didn't reach the signature.
1574   string signed_hash_context;
1575   if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
1576                         &signed_hash_context)) {
1577     TEST_AND_RETURN_FALSE(
1578         signed_hash_calculator_.SetContext(signed_hash_context));
1579   }
1580 
1581   prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signatures_message_data_);
1582 
1583   string hash_context;
1584   TEST_AND_RETURN_FALSE(
1585       prefs_->GetString(kPrefsUpdateStateSHA256Context, &hash_context) &&
1586       payload_hash_calculator_.SetContext(hash_context));
1587 
1588   int64_t manifest_metadata_size = 0;
1589   TEST_AND_RETURN_FALSE(
1590       prefs_->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
1591       manifest_metadata_size > 0);
1592   metadata_size_ = manifest_metadata_size;
1593 
1594   int64_t manifest_signature_size = 0;
1595   TEST_AND_RETURN_FALSE(
1596       prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
1597       manifest_signature_size >= 0);
1598   metadata_signature_size_ = manifest_signature_size;
1599 
1600   // Advance the download progress to reflect what doesn't need to be
1601   // re-downloaded.
1602   total_bytes_received_ += buffer_offset_;
1603 
1604   // Speculatively count the resume as a failure.
1605   int64_t resumed_update_failures{};
1606   if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
1607     resumed_update_failures++;
1608   } else {
1609     resumed_update_failures = 1;
1610   }
1611   prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
1612   return true;
1613 }
1614 
IsDynamicPartition(const std::string & part_name,uint32_t slot)1615 bool DeltaPerformer::IsDynamicPartition(const std::string& part_name,
1616                                         uint32_t slot) {
1617   return boot_control_->GetDynamicPartitionControl()->IsDynamicPartition(
1618       part_name, slot);
1619 }
1620 
CreatePartitionWriter(const PartitionUpdate & partition_update,const InstallPlan::Partition & install_part,DynamicPartitionControlInterface * dynamic_control,size_t block_size,bool is_interactive,bool is_dynamic_partition)1621 std::unique_ptr<PartitionWriterInterface> DeltaPerformer::CreatePartitionWriter(
1622     const PartitionUpdate& partition_update,
1623     const InstallPlan::Partition& install_part,
1624     DynamicPartitionControlInterface* dynamic_control,
1625     size_t block_size,
1626     bool is_interactive,
1627     bool is_dynamic_partition) {
1628   return partition_writer::CreatePartitionWriter(
1629       partition_update,
1630       install_part,
1631       dynamic_control,
1632       block_size_,
1633       interactive_,
1634       IsDynamicPartition(install_part.name, install_plan_->target_slot));
1635 }
1636 
1637 }  // namespace chromeos_update_engine
1638