1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "media/QuaternionUtil.h"
18 
19 #include <cassert>
20 
21 namespace android {
22 namespace media {
23 
24 using Eigen::NumTraits;
25 using Eigen::Quaternionf;
26 using Eigen::Vector3f;
27 
28 namespace {
29 
LogSU2(const Quaternionf & q)30 Vector3f LogSU2(const Quaternionf& q) {
31     // Implementation of the logarithmic map of SU(2) using atan.
32     // This follows Hertzberg et al. "Integrating Generic Sensor Fusion Algorithms
33     // with Sound State Representations through Encapsulation of Manifolds", Eq.
34     // (31)
35     // We use asin and acos instead of atan to enable the use of Eigen Autodiff
36     // with SU2.
37     const float sign_of_w = q.w() < 0.f ? -1.f : 1.f;
38     const float abs_w = sign_of_w * q.w();
39     const Vector3f v = sign_of_w * q.vec();
40     const float squared_norm_of_v = v.squaredNorm();
41 
42     assert(abs(1.f - abs_w * abs_w - squared_norm_of_v) < NumTraits<float>::dummy_precision());
43 
44     if (squared_norm_of_v > NumTraits<float>::dummy_precision()) {
45         const float norm_of_v = sqrt(squared_norm_of_v);
46         if (abs_w > NumTraits<float>::dummy_precision()) {
47             // asin(x) = acos(x) at x = 1/sqrt(2).
48             if (norm_of_v <= float(M_SQRT1_2)) {
49                 return (asin(norm_of_v) / norm_of_v) * v;
50             }
51             return (acos(abs_w) / norm_of_v) * v;
52         }
53         return (M_PI_2 / norm_of_v) * v;
54     }
55 
56     // Taylor expansion at squared_norm_of_v == 0
57     return (1.f / abs_w - squared_norm_of_v / (3.f * pow(abs_w, 3))) * v;
58 }
59 
ExpSU2(const Vector3f & delta)60 Quaternionf ExpSU2(const Vector3f& delta) {
61     Quaternionf q_delta;
62     const float theta_squared = delta.squaredNorm();
63     if (theta_squared > NumTraits<float>::dummy_precision()) {
64         const float theta = sqrt(theta_squared);
65         q_delta.w() = cos(theta);
66         q_delta.vec() = (sin(theta) / theta) * delta;
67     } else {
68         // taylor expansions around theta == 0
69         q_delta.w() = 1.f - 0.5f * theta_squared;
70         q_delta.vec() = (1.f - 1.f / 6.f * theta_squared) * delta;
71     }
72     return q_delta;
73 }
74 
75 }  // namespace
76 
rotationVectorToQuaternion(const Vector3f & rotationVector)77 Quaternionf rotationVectorToQuaternion(const Vector3f& rotationVector) {
78     //  SU(2) is a double cover of SO(3), thus we have to half the tangent vector
79     //  delta
80     const Vector3f half_delta = 0.5f * rotationVector;
81     return ExpSU2(half_delta);
82 }
83 
quaternionToRotationVector(const Quaternionf & quaternion)84 Vector3f quaternionToRotationVector(const Quaternionf& quaternion) {
85     // SU(2) is a double cover of SO(3), thus we have to multiply the tangent
86     // vector delta by two
87     return 2.f * LogSU2(quaternion);
88 }
89 
rotateX(float angle)90 Quaternionf rotateX(float angle) {
91     return rotationVectorToQuaternion(Vector3f(1, 0, 0) * angle);
92 }
93 
rotateY(float angle)94 Quaternionf rotateY(float angle) {
95     return rotationVectorToQuaternion(Vector3f(0, 1, 0) * angle);
96 }
97 
rotateZ(float angle)98 Quaternionf rotateZ(float angle) {
99     return rotationVectorToQuaternion(Vector3f(0, 0, 1) * angle);
100 }
101 
102 }  // namespace media
103 }  // namespace android
104