/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | Activation.cpp | 58 int numElements = getNumberOfElements(inputShape); in reluFloat() 94 int numElements = getNumberOfElements(inputShape); in tanhFloat16() 104 int numElements = getNumberOfElements(inputShape); in tanhFloat32() 115 int numElements = getNumberOfElements(inputShape); in logisticFloat() 129 int numElements = getNumberOfElements(inputShape); in reluXQuant8() 169 [[maybe_unused]] int numElements = getNumberOfElements(inputShape); in tanhQuant8() 199 [[maybe_unused]] int numElements = getNumberOfElements(inputShape); in logisticQuant8() 224 int numElements = getNumberOfElements(inputShape); in reluXQuant8Signed() 264 [[maybe_unused]] int numElements = getNumberOfElements(inputShape); in tanhQuant8Signed() 294 int numElements = getNumberOfElements(inputShape); in logisticQuant8Signed() [all …]
|
D | HeatmapMaxKeypoint.cpp | 181 std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape)); in heatmapMaxKeypointQuant() 183 std::vector<float> boxes_float32(getNumberOfElements(boxesShape)); in heatmapMaxKeypointQuant() 185 std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape)); in heatmapMaxKeypointQuant() 186 std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape)); in heatmapMaxKeypointQuant() 203 std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape)); in heatmapMaxKeypointQuant() 205 std::vector<float> boxes_float32(getNumberOfElements(boxesShape)); in heatmapMaxKeypointQuant() 207 std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape)); in heatmapMaxKeypointQuant() 208 std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape)); in heatmapMaxKeypointQuant() 274 std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape)); in execute() 276 std::vector<float> boxes_float32(getNumberOfElements(boxesShape)); in execute() [all …]
|
D | L2Normalization.cpp | 50 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normFloat32Impl() 53 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in l2normFloat32Impl() 77 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normQuant8Impl() 80 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in l2normQuant8Impl() 109 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normQuant8SignedImpl() 112 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in l2normQuant8SignedImpl() 156 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in l2normFloat16() 158 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in l2normFloat16() 189 const int32_t outerSize = getNumberOfElements(inputShape, 0, axis); in l2normQuant8Signed()
|
D | SVDF.cpp | 116 std::vector<float> inputDataFloat32(getNumberOfElements(input_->shape())); in Eval() 118 std::vector<float> inputStateDataFloat32(getNumberOfElements(state_in_->shape())); in Eval() 121 std::vector<float> biasDataFloat32(getNumberOfElements(bias_->shape())); in Eval() 127 getNumberOfElements(weights_feature_->shape())); in Eval() 130 std::vector<float> weightsTimeDataFloat32(getNumberOfElements(weights_time_->shape())); in Eval() 133 std::vector<float> outputDataFloat32(getNumberOfElements(output_->shape())); in Eval() 134 std::vector<float> outputStateDataFloat32(getNumberOfElements(state_out_->shape())); in Eval()
|
D | GenerateProposals.cpp | 74 const float* roiDataEnd = roiData + getNumberOfElements(roiShape); in bboxTransformFloat32() 118 std::vector<float> roi_float32(getNumberOfElements(roiShape)); in bboxTransformFloat16() 120 std::vector<float> delta_float32(getNumberOfElements(bboxDeltasShape)); in bboxTransformFloat16() 122 std::vector<float> imageInfo_float32(getNumberOfElements(imageInfoDataShape)); in bboxTransformFloat16() 124 std::vector<float> output_float32(getNumberOfElements(outputShape)); in bboxTransformFloat16() 138 std::vector<float> roi_float32(getNumberOfElements(roiShape)); in bboxTransformQuant() 140 std::vector<float> delta_float32(getNumberOfElements(bboxDeltasShape)); in bboxTransformQuant() 143 std::vector<float> imageInfo_float32(getNumberOfElements(imageInfoDataShape)); in bboxTransformQuant() 146 std::vector<float> output_float32(getNumberOfElements(outputShape)); in bboxTransformQuant() 160 std::vector<float> roi_float32(getNumberOfElements(roiShape)); in bboxTransformQuant() [all …]
|
D | Pooling.cpp | 156 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in averagePoolNhwc() 157 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in averagePoolNhwc() 202 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in l2PoolNhwc() 203 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in l2PoolNhwc() 246 std::vector<float> inputData_float32(getNumberOfElements(inputShape)); in maxPoolNhwc() 247 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); in maxPoolNhwc() 336 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeAveragePool() 351 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeL2Pool() 364 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeMaxPool()
|
D | Softmax.cpp | 53 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in softmaxSlowFloat32() 56 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in softmaxSlowFloat32() 101 std::vector<float> inputData_float32(getNumberOfElements(inputShape)); in softmaxFloat16() 103 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); in softmaxFloat16() 128 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in softmaxQuant8Impl() 131 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in softmaxQuant8Impl() 245 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | FullyConnected.cpp | 63 uint32_t input_n_elements = getNumberOfElements(inputShape); in fullyConnectedFloat32() 87 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in fullyConnectedFloat16() 89 std::vector<float> weightsDataFloat32(getNumberOfElements(weightsShape)); in fullyConnectedFloat16() 91 std::vector<float> biasDataFloat32(getNumberOfElements(biasShape)); in fullyConnectedFloat16() 94 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in fullyConnectedFloat16() 193 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | BidirectionalSequenceLSTM.cpp | 476 getNumberOfElements(fw_activation_state_->shape())); in Eval() 477 fw_output_cell_state.resize(getNumberOfElements(fw_cell_state_->shape())); in Eval() 482 std::vector<float> fw_scratch_buffer(getNumberOfElements(fw_scratch_shape_)); in Eval() 528 getNumberOfElements(bw_activation_state_->shape())); in Eval() 529 bw_output_cell_state.resize(getNumberOfElements(bw_cell_state_->shape())); in Eval() 534 std::vector<float> bw_scratch_buffer(getNumberOfElements(bw_scratch_shape_)); in Eval() 600 getNumberOfElements(fw_activation_state_->shape())); in Eval() 601 fw_output_cell_state.resize(getNumberOfElements(fw_cell_state_->shape())); in Eval() 606 std::vector<_Float16> fw_scratch_buffer(getNumberOfElements(fw_scratch_shape_)); in Eval() 653 getNumberOfElements(bw_activation_state_->shape())); in Eval() [all …]
|
D | SimpleMath.cpp | 43 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in meanFloat16() 46 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in meanFloat16() 65 U* tempSumBuffer = new (std::nothrow) U[getNumberOfElements(outputShape)]; in meanGeneric()
|
D | LocalResponseNormalization.cpp | 50 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in localResponseNormFloat32Impl() 53 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in localResponseNormFloat32Impl() 106 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in localResponseNorm() 108 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in localResponseNorm()
|
D | Quantize.cpp | 38 uint32_t size = getNumberOfElements(outputShape); in quantizeToQuant8() 51 uint32_t size = getNumberOfElements(outputShape); in quantizeToQuant8Signed() 72 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | Dequantize.cpp | 32 const int numElements = getNumberOfElements(inputShape); in compute() 55 const int numElements = getNumberOfElements(inputShape); in computePerChannel() 84 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | Gather.cpp | 33 const auto outerSize = getNumberOfElements(inputShape, 0, axis); in eval() 36 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in eval() 37 const auto indicesCount = getNumberOfElements(indicesShape); in eval()
|
D | Elu.cpp | 39 int numElements = getNumberOfElements(inputShape); in eluFloat() 56 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | BatchMatmul.cpp | 125 auto tempInputLHSData = getTempData<T>(getNumberOfElements(inputLHSShape)); in batchMatMulGeneric() 126 auto tempInputRHSData = getTempData<T>(getNumberOfElements(inputRHSShape)); in batchMatMulGeneric() 159 auto tempInputLHSData = getTempData<T>(getNumberOfElements(inputLHSShape)); in batchMatMulQuantized() 160 auto tempInputRHSData = getTempData<T>(getNumberOfElements(inputRHSShape)); in batchMatMulQuantized()
|
D | TransposeConv2D.cpp | 132 memset(outputData, 0, getNumberOfElements(outputShape) * sizeof(float)); in transposeConvNhwc() 187 uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t); in transposeConvNhwc() 279 std::vector<float> inputData_float32(getNumberOfElements(inputShape)); in transposeConvNhwc() 280 std::vector<float> filterData_float32(getNumberOfElements(filterShape)); in transposeConvNhwc() 281 std::vector<float> biasData_float32(getNumberOfElements(biasShape)); in transposeConvNhwc() 282 std::vector<float> outputData_float32(getNumberOfElements(outputShape)); in transposeConvNhwc() 323 uint32_t tempBufferByteSize = getNumberOfElements(outputShape) * sizeof(int32_t); in transposeConvQuant8PerChannelNhwc() 496 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | ArgMinMax.cpp | 33 const int outerSize = getNumberOfElements(inputShape, 0, axis); in argMinMaxImpl() 36 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in argMinMaxImpl()
|
D | DepthwiseConv2D.cpp | 171 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape)); in depthwiseConvNhwc() 173 std::vector<float> filterDataFloat32(getNumberOfElements(filterShape)); in depthwiseConvNhwc() 175 std::vector<float> biasDataFloat32(getNumberOfElements(biasShape)); in depthwiseConvNhwc() 178 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape)); in depthwiseConvNhwc() 249 std::vector<uint8_t> unsignedInput(getNumberOfElements(inputShape)); in depthwiseConvNhwc() 253 std::vector<uint8_t> unsignedFilter(getNumberOfElements(filterShape)); in depthwiseConvNhwc() 257 std::vector<uint8_t> unsignedOutput(getNumberOfElements(outputShape)); in depthwiseConvNhwc() 477 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | Broadcast.cpp | 83 std::vector<float> in1_float32(getNumberOfElements(shape1)); in binaryOperationFloat16() 85 std::vector<float> in2_float32(getNumberOfElements(shape2)); in binaryOperationFloat16() 87 std::vector<float> out_float32(getNumberOfElements(shapeOut)); in binaryOperationFloat16() 326 uint32_t numOutputElements = getNumberOfElements(shapeOut); in subFloat32() 453 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeAdd() 503 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeMul() 553 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeSub() 603 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in executeDiv()
|
D | LogSoftmax.cpp | 35 const uint32_t outerSize = getNumberOfElements(shape, 0, axis); in compute() 37 const uint32_t innerSize = getNumberOfElements(shape, axis + 1, getNumberOfDimensions(shape)); in compute()
|
D | Concatenation.cpp | 118 const auto currentSize = getNumberOfElements(context->getInputShape(i)); in concatenation() 132 std::vector<uint8_t> output_uint8(getNumberOfElements(context->getOutputShape(kOutputTensor))); in concatenation() 178 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true; in execute()
|
D | ChannelShuffle.cpp | 32 const uint32_t outerSize = getNumberOfElements(inputShape, 0, axis); in eval() 35 getNumberOfElements(inputShape, axis + 1, getNumberOfDimensions(inputShape)); in eval()
|
/packages/modules/NeuralNetworks/common/types/src/ |
D | OperationsUtils.cpp | 49 uint32_t getNumberOfElements(const Shape& shape) { in getNumberOfElements() function 57 uint32_t getNumberOfElements(const Shape& shape, size_t firstAxisInclusive, in getNumberOfElements() function
|
/packages/modules/NeuralNetworks/common/types/operations/src/ |
D | Cast.cpp | 60 auto getNumberOfElements = [](const std::vector<uint32_t>& dims) { in validate() local 67 getNumberOfElements(outputShape.dimensions) == 0 || in validate()
|