1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include "Concatenation.h"
20
21 #include <algorithm>
22 #include <iterator>
23 #include <vector>
24
25 #include "OperationResolver.h"
26 #include "OperationsExecutionUtils.h"
27 #include "Tracing.h"
28 #include "nnapi/Validation.h"
29
30 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
31 #pragma clang diagnostic push
32 #pragma clang diagnostic ignored "-Wunused-parameter"
33 #pragma clang diagnostic ignored "-Wsign-compare"
34 #pragma clang diagnostic ignored "-Winvalid-partial-specialization"
35 #include <tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h>
36 #include <tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h>
37 #include <tensorflow/lite/kernels/internal/reference/reference_ops.h>
38 #include <tensorflow/lite/kernels/internal/types.h>
39 #pragma clang diagnostic pop
40
41 #include "CpuOperationUtils.h"
42 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
43
44 namespace android {
45 namespace nn {
46 namespace concatenation {
47
48 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
49 namespace {
50
51 template <typename T>
concatenation(const std::vector<const T * > & inputDataPtrs,const std::vector<Shape> & inputShapes,int32_t axis,T * outputData,const Shape & outputShape)52 bool concatenation(const std::vector<const T*>& inputDataPtrs,
53 const std::vector<Shape>& inputShapes, int32_t axis, T* outputData,
54 const Shape& outputShape) {
55 NNTRACE_TRANS("concatenation");
56 int num_inputs = inputShapes.size();
57 std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
58 std::vector<tflite::Dims<4>> inputDims(num_inputs);
59 for (int i = 0; i < num_inputs; i++) {
60 inputDims[i] = convertShapeToDims(inputShapes[i]);
61 inputDimsPtr[i] = &inputDims[i];
62 }
63 NNTRACE_COMP_SWITCH("optimized_ops::Concatenation");
64 tflite::optimized_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, T>(
65 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
66 inputDimsPtr.data(), num_inputs, outputData, convertShapeToDims(outputShape));
67
68 return true;
69 }
70
71 template <>
concatenation(const std::vector<const uint8_t * > & inputDataPtrs,const std::vector<Shape> & inputShapes,int32_t axis,uint8_t * outputData,const Shape & outputShape)72 bool concatenation<uint8_t>(const std::vector<const uint8_t*>& inputDataPtrs,
73 const std::vector<Shape>& inputShapes, int32_t axis,
74 uint8_t* outputData, const Shape& outputShape) {
75 NNTRACE_TRANS("concatenationQuant8");
76 int num_inputs = inputShapes.size();
77 std::vector<float> inputScales(num_inputs);
78 std::vector<int32> inputOffsets(num_inputs);
79 std::vector<tflite::Dims<4>*> inputDimsPtr(num_inputs);
80 std::vector<tflite::Dims<4>> inputDims(num_inputs);
81 for (int i = 0; i < num_inputs; i++) {
82 inputScales[i] = inputShapes[i].scale;
83 inputOffsets[i] = inputShapes[i].offset;
84 inputDims[i] = convertShapeToDims(inputShapes[i]);
85 inputDimsPtr[i] = &inputDims[i];
86 }
87
88 NNTRACE_COMP_SWITCH("reference_ops::Concatenation");
89 tflite::reference_ops::Concatenation(
90 getNumberOfDimensions(outputShape) - axis - 1, inputDataPtrs.data(),
91 inputDimsPtr.data(), inputOffsets.data(), inputScales.data(), num_inputs, outputData,
92 convertShapeToDims(outputShape), outputShape.offset, outputShape.scale);
93
94 return true;
95 }
96
97 template <typename T>
concatenation(IOperationExecutionContext * context)98 inline bool concatenation(IOperationExecutionContext* context) {
99 uint32_t inputCount = context->getNumInputs() - 1;
100 std::vector<const T*> inputDatas;
101 std::vector<Shape> inputShapes;
102 for (uint32_t i = 0; i < inputCount; ++i) {
103 const T* buffer = context->getInputBuffer<T>(i);
104 if (buffer == nullptr) continue;
105 inputDatas.push_back(buffer);
106 inputShapes.push_back(context->getInputShape(i));
107 }
108 return concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
109 context->getOutputBuffer<T>(kOutputTensor),
110 context->getOutputShape(kOutputTensor));
111 }
112
113 template <>
concatenation(IOperationExecutionContext * context)114 inline bool concatenation<int8_t>(IOperationExecutionContext* context) {
115 uint32_t inputCount = context->getNumInputs() - 1;
116 std::vector<std::vector<uint8_t>> inputs_uint8(inputCount);
117 for (uint32_t i = 0; i < inputCount; ++i) {
118 const auto currentSize = getNumberOfElements(context->getInputShape(i));
119 inputs_uint8[i].resize(currentSize);
120 if (currentSize != 0) {
121 convertInt8ToUInt8(context->getInputBuffer<int8_t>(i), &inputs_uint8[i]);
122 }
123 }
124 std::vector<const uint8_t*> inputDatas;
125 std::vector<Shape> inputShapes;
126 for (uint32_t i = 0; i < inputCount; ++i) {
127 inputDatas.push_back(inputs_uint8[i].data());
128 inputShapes.push_back(context->getInputShape(i));
129 inputShapes[i].offset += 128;
130 }
131
132 std::vector<uint8_t> output_uint8(getNumberOfElements(context->getOutputShape(kOutputTensor)));
133 Shape outputShape(context->getOutputShape(kOutputTensor));
134 outputShape.offset += 128;
135 NN_RET_CHECK(concatenation(inputDatas, inputShapes, context->getInputValue<int32_t>(inputCount),
136 output_uint8.data(), outputShape));
137
138 convertUInt8ToInt8(output_uint8, context->getOutputBuffer<int8_t>(kOutputTensor));
139
140 return true;
141 }
142
143 } // namespace
144
prepare(IOperationExecutionContext * context)145 bool prepare(IOperationExecutionContext* context) {
146 uint32_t numInputs = context->getNumInputs();
147 NN_RET_CHECK_GE(numInputs, 2u);
148 const Shape& input0 = context->getInputShape(0);
149 uint32_t numDimensions = getNumberOfDimensions(input0);
150 int32_t axis = context->getInputValue<int32_t>(numInputs - 1);
151 NN_RET_CHECK_GE(axis, 0);
152 NN_RET_CHECK_LT(static_cast<uint32_t>(axis), numDimensions);
153 NN_RET_CHECK_LE(numDimensions, 4u);
154
155 uint32_t sumAxis = getSizeOfDimension(input0, axis);
156 for (uint32_t i = 1; i < numInputs - 1; ++i) {
157 const Shape& input = context->getInputShape(i);
158 NN_RET_CHECK_EQ(getNumberOfDimensions(input), numDimensions);
159 NN_RET_CHECK(input.type == input0.type);
160 for (uint32_t d = 0; d < numDimensions; ++d) {
161 if (d == static_cast<uint32_t>(axis)) {
162 sumAxis += getSizeOfDimension(input, axis);
163 } else {
164 NN_RET_CHECK_EQ(getSizeOfDimension(input0, d), getSizeOfDimension(input, d));
165 }
166 }
167 }
168
169 Shape output = context->getOutputShape(kOutputTensor);
170 output.type = input0.type;
171 output.dimensions = input0.dimensions;
172 output.dimensions[axis] = sumAxis;
173 return context->setOutputShape(kOutputTensor, output);
174 }
175
execute(IOperationExecutionContext * context)176 bool execute(IOperationExecutionContext* context) {
177 // Bypass execution in the case of zero-sized input.
178 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
179 switch (context->getInputType(0)) {
180 case OperandType::TENSOR_FLOAT16:
181 return concatenation<_Float16>(context);
182 case OperandType::TENSOR_FLOAT32:
183 return concatenation<float>(context);
184 case OperandType::TENSOR_QUANT8_ASYMM:
185 return concatenation<uint8_t>(context);
186 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
187 return concatenation<int8_t>(context);
188 default:
189 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
190 }
191 }
192 #endif // NN_INCLUDE_CPU_IMPLEMENTATION
193
194 } // namespace concatenation
195
196 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(CONCATENATION, concatenation::prepare,
197 concatenation::execute, .allowZeroSizedInput = true);
198
199 } // namespace nn
200 } // namespace android
201