1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_simplifier_shared.h"
18
19 #include "code_generator.h"
20 #include "mirror/array-inl.h"
21 #include "nodes.h"
22
23 namespace art HIDDEN {
24
25 namespace {
26
TrySimpleMultiplyAccumulatePatterns(HMul * mul,HBinaryOperation * input_binop,HInstruction * input_other)27 bool TrySimpleMultiplyAccumulatePatterns(HMul* mul,
28 HBinaryOperation* input_binop,
29 HInstruction* input_other) {
30 DCHECK(DataType::IsIntOrLongType(mul->GetType()));
31 DCHECK(input_binop->IsAdd() || input_binop->IsSub());
32 DCHECK_NE(input_binop, input_other);
33 if (!input_binop->HasOnlyOneNonEnvironmentUse()) {
34 return false;
35 }
36
37 // Try to interpret patterns like
38 // a * (b <+/-> 1)
39 // as
40 // (a * b) <+/-> a
41 HInstruction* input_a = input_other;
42 HInstruction* input_b = nullptr; // Set to a non-null value if we found a pattern to optimize.
43 HInstruction::InstructionKind op_kind;
44
45 if (input_binop->IsAdd()) {
46 if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) {
47 // Interpret
48 // a * (b + 1)
49 // as
50 // (a * b) + a
51 input_b = input_binop->GetLeastConstantLeft();
52 op_kind = HInstruction::kAdd;
53 }
54 } else {
55 DCHECK(input_binop->IsSub());
56 if (input_binop->GetRight()->IsConstant() &&
57 input_binop->GetRight()->AsConstant()->IsMinusOne()) {
58 // Interpret
59 // a * (b - (-1))
60 // as
61 // a + (a * b)
62 input_b = input_binop->GetLeft();
63 op_kind = HInstruction::kAdd;
64 } else if (input_binop->GetLeft()->IsConstant() &&
65 input_binop->GetLeft()->AsConstant()->IsOne()) {
66 // Interpret
67 // a * (1 - b)
68 // as
69 // a - (a * b)
70 input_b = input_binop->GetRight();
71 op_kind = HInstruction::kSub;
72 }
73 }
74
75 if (input_b == nullptr) {
76 // We did not find a pattern we can optimize.
77 return false;
78 }
79
80 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
81 HMultiplyAccumulate* mulacc = new (allocator) HMultiplyAccumulate(
82 mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc());
83
84 mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc);
85 input_binop->GetBlock()->RemoveInstruction(input_binop);
86
87 return true;
88 }
89
90 } // namespace
91
TryCombineMultiplyAccumulate(HMul * mul,InstructionSet isa)92 bool TryCombineMultiplyAccumulate(HMul* mul, InstructionSet isa) {
93 DataType::Type type = mul->GetType();
94 switch (isa) {
95 case InstructionSet::kArm:
96 case InstructionSet::kThumb2:
97 if (type != DataType::Type::kInt32) {
98 return false;
99 }
100 break;
101 case InstructionSet::kArm64:
102 if (!DataType::IsIntOrLongType(type)) {
103 return false;
104 }
105 break;
106 default:
107 return false;
108 }
109
110 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
111
112 if (mul->HasOnlyOneNonEnvironmentUse()) {
113 HInstruction* use = mul->GetUses().front().GetUser();
114 if (use->IsAdd() || use->IsSub()) {
115 // Replace code looking like
116 // MUL tmp, x, y
117 // SUB dst, acc, tmp
118 // with
119 // MULSUB dst, acc, x, y
120 // Note that we do not want to (unconditionally) perform the merge when the
121 // multiplication has multiple uses and it can be merged in all of them.
122 // Multiple uses could happen on the same control-flow path, and we would
123 // then increase the amount of work. In the future we could try to evaluate
124 // whether all uses are on different control-flow paths (using dominance and
125 // reverse-dominance information) and only perform the merge when they are.
126 HInstruction* accumulator = nullptr;
127 HBinaryOperation* binop = use->AsBinaryOperation();
128 HInstruction* binop_left = binop->GetLeft();
129 HInstruction* binop_right = binop->GetRight();
130 // Be careful after GVN. This should not happen since the `HMul` has only
131 // one use.
132 DCHECK_NE(binop_left, binop_right);
133 if (binop_right == mul) {
134 accumulator = binop_left;
135 } else if (use->IsAdd()) {
136 DCHECK_EQ(binop_left, mul);
137 accumulator = binop_right;
138 }
139
140 if (accumulator != nullptr) {
141 HMultiplyAccumulate* mulacc =
142 new (allocator) HMultiplyAccumulate(type,
143 binop->GetKind(),
144 accumulator,
145 mul->GetLeft(),
146 mul->GetRight());
147
148 binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
149 DCHECK(!mul->HasUses());
150 mul->GetBlock()->RemoveInstruction(mul);
151 return true;
152 }
153 } else if (use->IsNeg() && isa != InstructionSet::kArm) {
154 HMultiplyAccumulate* mulacc =
155 new (allocator) HMultiplyAccumulate(type,
156 HInstruction::kSub,
157 mul->GetBlock()->GetGraph()->GetConstant(type, 0),
158 mul->GetLeft(),
159 mul->GetRight());
160
161 use->GetBlock()->ReplaceAndRemoveInstructionWith(use, mulacc);
162 DCHECK(!mul->HasUses());
163 mul->GetBlock()->RemoveInstruction(mul);
164 return true;
165 }
166 }
167
168 // Use multiply accumulate instruction for a few simple patterns.
169 // We prefer not applying the following transformations if the left and
170 // right inputs perform the same operation.
171 // We rely on GVN having squashed the inputs if appropriate. However the
172 // results are still correct even if that did not happen.
173 if (mul->GetLeft() == mul->GetRight()) {
174 return false;
175 }
176
177 HInstruction* left = mul->GetLeft();
178 HInstruction* right = mul->GetRight();
179 if ((right->IsAdd() || right->IsSub()) &&
180 TrySimpleMultiplyAccumulatePatterns(mul, right->AsBinaryOperation(), left)) {
181 return true;
182 }
183 if ((left->IsAdd() || left->IsSub()) &&
184 TrySimpleMultiplyAccumulatePatterns(mul, left->AsBinaryOperation(), right)) {
185 return true;
186 }
187 return false;
188 }
189
TryExtractArrayAccessAddress(CodeGenerator * codegen,HInstruction * access,HInstruction * array,HInstruction * index,size_t data_offset)190 bool TryExtractArrayAccessAddress(CodeGenerator* codegen,
191 HInstruction* access,
192 HInstruction* array,
193 HInstruction* index,
194 size_t data_offset) {
195 if (index->IsConstant() ||
196 (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
197 // When the index is a constant all the addressing can be fitted in the
198 // memory access instruction, so do not split the access.
199 return false;
200 }
201 if (access->IsArraySet() &&
202 access->AsArraySet()->GetValue()->GetType() == DataType::Type::kReference) {
203 // The access may require a runtime call or the original array pointer.
204 return false;
205 }
206 if (codegen->EmitNonBakerReadBarrier() &&
207 access->IsArrayGet() &&
208 access->GetType() == DataType::Type::kReference) {
209 // For object arrays, the non-Baker read barrier instrumentation requires
210 // the original array pointer.
211 return false;
212 }
213
214 // Proceed to extract the base address computation.
215 HGraph* graph = access->GetBlock()->GetGraph();
216 ArenaAllocator* allocator = graph->GetAllocator();
217
218 HIntConstant* offset = graph->GetIntConstant(data_offset);
219 HIntermediateAddress* address = new (allocator) HIntermediateAddress(array, offset, kNoDexPc);
220 // TODO: Is it ok to not have this on the intermediate address?
221 // address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
222 access->GetBlock()->InsertInstructionBefore(address, access);
223 access->ReplaceInput(address, 0);
224 // Both instructions must depend on GC to prevent any instruction that can
225 // trigger GC to be inserted between the two.
226 access->AddSideEffects(SideEffects::DependsOnGC());
227 DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC()));
228 DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC()));
229 // TODO: Code generation for HArrayGet and HArraySet will check whether the input address
230 // is an HIntermediateAddress and generate appropriate code.
231 // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe
232 // `HArm64Load` and `HArm64Store`,`HArmLoad` and `HArmStore`). We defer these changes
233 // because these new instructions would not bring any advantages yet.
234 // Also see the comments in
235 // `InstructionCodeGeneratorARMVIXL::VisitArrayGet()`
236 // `InstructionCodeGeneratorARMVIXL::VisitArraySet()`
237 // `InstructionCodeGeneratorARM64::VisitArrayGet()`
238 // `InstructionCodeGeneratorARM64::VisitArraySet()`.
239 return true;
240 }
241
TryExtractVecArrayAccessAddress(HVecMemoryOperation * access,HInstruction * index)242 bool TryExtractVecArrayAccessAddress(HVecMemoryOperation* access, HInstruction* index) {
243 if (index->IsConstant()) {
244 // If index is constant the whole address calculation often can be done by LDR/STR themselves.
245 // TODO: Treat the case with not-embedable constant.
246 return false;
247 }
248
249 HGraph* graph = access->GetBlock()->GetGraph();
250 ArenaAllocator* allocator = graph->GetAllocator();
251 DataType::Type packed_type = access->GetPackedType();
252 uint32_t data_offset = mirror::Array::DataOffset(
253 DataType::Size(packed_type)).Uint32Value();
254 size_t component_shift = DataType::SizeShift(packed_type);
255
256 bool is_extracting_beneficial = false;
257 // It is beneficial to extract index intermediate address only if there are at least 2 users.
258 for (const HUseListNode<HInstruction*>& use : index->GetUses()) {
259 HInstruction* user = use.GetUser();
260 if (user->IsVecMemoryOperation() && user != access) {
261 HVecMemoryOperation* another_access = user->AsVecMemoryOperation();
262 DataType::Type another_packed_type = another_access->GetPackedType();
263 uint32_t another_data_offset = mirror::Array::DataOffset(
264 DataType::Size(another_packed_type)).Uint32Value();
265 size_t another_component_shift = DataType::SizeShift(another_packed_type);
266 if (another_data_offset == data_offset && another_component_shift == component_shift) {
267 is_extracting_beneficial = true;
268 break;
269 }
270 } else if (user->IsIntermediateAddressIndex()) {
271 HIntermediateAddressIndex* another_access = user->AsIntermediateAddressIndex();
272 uint32_t another_data_offset = another_access->GetOffset()->AsIntConstant()->GetValue();
273 size_t another_component_shift = another_access->GetShift()->AsIntConstant()->GetValue();
274 if (another_data_offset == data_offset && another_component_shift == component_shift) {
275 is_extracting_beneficial = true;
276 break;
277 }
278 }
279 }
280
281 if (!is_extracting_beneficial) {
282 return false;
283 }
284
285 // Proceed to extract the index + data_offset address computation.
286 HIntConstant* offset = graph->GetIntConstant(data_offset);
287 HIntConstant* shift = graph->GetIntConstant(component_shift);
288 HIntermediateAddressIndex* address =
289 new (allocator) HIntermediateAddressIndex(index, offset, shift, kNoDexPc);
290
291 access->GetBlock()->InsertInstructionBefore(address, access);
292 access->ReplaceInput(address, 1);
293
294 return true;
295 }
296
TryReplaceSubSubWithSubAdd(HSub * last_sub)297 bool TryReplaceSubSubWithSubAdd(HSub* last_sub) {
298 DCHECK(last_sub->GetRight()->IsSub());
299 HBasicBlock* basic_block = last_sub->GetBlock();
300 ArenaAllocator* allocator = basic_block->GetGraph()->GetAllocator();
301 HInstruction* last_sub_right = last_sub->GetRight();
302 HInstruction* last_sub_left = last_sub->GetLeft();
303 if (last_sub_right->GetUses().HasExactlyOneElement()) {
304 // Reorder operands of last_sub_right: Sub(a, b) -> Sub(b, a).
305 HInstruction* a = last_sub_right->InputAt(0);
306 HInstruction* b = last_sub_right->InputAt(1);
307 last_sub_right->ReplaceInput(b, 0);
308 last_sub_right->ReplaceInput(a, 1);
309
310 // Replace Sub(c, Sub(a, b)) with Add(c, Sub(b, a).
311 HAdd* add = new (allocator) HAdd(last_sub->GetType(), last_sub_left, last_sub_right);
312 basic_block->ReplaceAndRemoveInstructionWith(last_sub, add);
313 return true;
314 } else {
315 return false;
316 }
317 }
318
319 } // namespace art
320