1 /*
2 * Copyright (C) 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "runtime_image.h"
18
19 #include <lz4.h>
20 #include <unistd.h>
21
22 #include "android-base/file.h"
23 #include "android-base/stringprintf.h"
24 #include "android-base/strings.h"
25 #include "arch/instruction_set.h"
26 #include "arch/instruction_set_features.h"
27 #include "base/arena_allocator.h"
28 #include "base/arena_containers.h"
29 #include "base/bit_utils.h"
30 #include "base/file_utils.h"
31 #include "base/length_prefixed_array.h"
32 #include "base/scoped_flock.h"
33 #include "base/stl_util.h"
34 #include "base/systrace.h"
35 #include "base/unix_file/fd_file.h"
36 #include "base/utils.h"
37 #include "class_loader_context.h"
38 #include "class_loader_utils.h"
39 #include "class_root-inl.h"
40 #include "dex/class_accessor-inl.h"
41 #include "gc/space/image_space.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_array-alloc-inl.h"
45 #include "mirror/object_array-inl.h"
46 #include "mirror/object_array.h"
47 #include "mirror/string-inl.h"
48 #include "nterp_helpers.h"
49 #include "oat/image.h"
50 #include "oat/oat.h"
51 #include "profile/profile_compilation_info.h"
52 #include "scoped_thread_state_change-inl.h"
53 #include "vdex_file.h"
54
55 namespace art HIDDEN {
56
57 using android::base::StringPrintf;
58
59 /**
60 * The native data structures that we store in the image.
61 */
62 enum class NativeRelocationKind {
63 kArtFieldArray,
64 kArtMethodArray,
65 kArtMethod,
66 kImTable,
67 // For dex cache arrays which can stay in memory even after startup. Those are
68 // dex cache arrays whose size is below a given threshold, defined by
69 // DexCache::ShouldAllocateFullArray.
70 kFullNativeDexCacheArray,
71 // For dex cache arrays which we will want to release after app startup.
72 kStartupNativeDexCacheArray,
73 };
74
75 /**
76 * Helper class to generate an app image at runtime.
77 */
78 class RuntimeImageHelper {
79 public:
RuntimeImageHelper(gc::Heap * heap)80 explicit RuntimeImageHelper(gc::Heap* heap) :
81 allocator_(Runtime::Current()->GetArenaPool()),
82 objects_(allocator_.Adapter()),
83 art_fields_(allocator_.Adapter()),
84 art_methods_(allocator_.Adapter()),
85 im_tables_(allocator_.Adapter()),
86 metadata_(allocator_.Adapter()),
87 dex_cache_arrays_(allocator_.Adapter()),
88 string_reference_offsets_(allocator_.Adapter()),
89 sections_(ImageHeader::kSectionCount, allocator_.Adapter()),
90 object_offsets_(allocator_.Adapter()),
91 classes_(allocator_.Adapter()),
92 array_classes_(allocator_.Adapter()),
93 dex_caches_(allocator_.Adapter()),
94 class_hashes_(allocator_.Adapter()),
95 native_relocations_(allocator_.Adapter()),
96 boot_image_begin_(heap->GetBootImagesStartAddress()),
97 boot_image_size_(heap->GetBootImagesSize()),
98 image_begin_(boot_image_begin_ + boot_image_size_),
99 // Note: image relocation considers the image header in the bitmap.
100 object_section_size_(sizeof(ImageHeader)),
101 intern_table_(InternStringHash(this), InternStringEquals(this)),
102 class_table_(ClassDescriptorHash(this), ClassDescriptorEquals()) {}
103
Generate(std::string * error_msg)104 bool Generate(std::string* error_msg) {
105 if (!WriteObjects(error_msg)) {
106 return false;
107 }
108
109 // Generate the sections information stored in the header.
110 CreateImageSections();
111
112 // Now that all sections have been created and we know their offset and
113 // size, relocate native pointers inside classes and ImTables.
114 RelocateNativePointers();
115
116 // Generate the bitmap section, stored kElfSegmentAlignment-aligned after the sections data and
117 // of size `object_section_size_` rounded up to kCardSize to match the bitmap size expected by
118 // Loader::Init at art::gc::space::ImageSpace.
119 size_t sections_end = sections_[ImageHeader::kSectionMetadata].End();
120 image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create(
121 "image bitmap",
122 reinterpret_cast<uint8_t*>(image_begin_),
123 RoundUp(object_section_size_, gc::accounting::CardTable::kCardSize));
124 for (uint32_t offset : object_offsets_) {
125 DCHECK(IsAligned<kObjectAlignment>(image_begin_ + sizeof(ImageHeader) + offset));
126 image_bitmap_.Set(
127 reinterpret_cast<mirror::Object*>(image_begin_ + sizeof(ImageHeader) + offset));
128 }
129 const size_t bitmap_bytes = image_bitmap_.Size();
130 auto* bitmap_section = §ions_[ImageHeader::kSectionImageBitmap];
131 // The offset of the bitmap section should be aligned to kElfSegmentAlignment to enable mapping
132 // the section from file to memory. However the section size doesn't have to be rounded up as
133 // it is located at the end of the file. When mapping file contents to memory, if the last page
134 // of the mapping is only partially filled with data, the rest will be zero-filled.
135 *bitmap_section = ImageSection(RoundUp(sections_end, kElfSegmentAlignment), bitmap_bytes);
136
137 // Compute boot image checksum and boot image components, to be stored in
138 // the header.
139 gc::Heap* const heap = Runtime::Current()->GetHeap();
140 uint32_t boot_image_components = 0u;
141 uint32_t boot_image_checksums = 0u;
142 const std::vector<gc::space::ImageSpace*>& image_spaces = heap->GetBootImageSpaces();
143 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
144 const ImageHeader& header = image_spaces[i]->GetImageHeader();
145 boot_image_components += header.GetComponentCount();
146 boot_image_checksums ^= header.GetImageChecksum();
147 DCHECK_LE(header.GetImageSpaceCount(), size - i);
148 i += header.GetImageSpaceCount();
149 }
150
151 header_ = ImageHeader(
152 /* image_reservation_size= */ RoundUp(sections_end, kElfSegmentAlignment),
153 /* component_count= */ 1,
154 image_begin_,
155 sections_end,
156 sections_.data(),
157 /* image_roots= */ image_begin_ + sizeof(ImageHeader),
158 /* oat_checksum= */ 0,
159 /* oat_file_begin= */ 0,
160 /* oat_data_begin= */ 0,
161 /* oat_data_end= */ 0,
162 /* oat_file_end= */ 0,
163 heap->GetBootImagesStartAddress(),
164 heap->GetBootImagesSize(),
165 boot_image_components,
166 boot_image_checksums,
167 kRuntimePointerSize);
168
169 // Data size includes everything except the bitmap and the header.
170 header_.data_size_ = sections_end - sizeof(ImageHeader);
171
172 // Write image methods - needs to happen after creation of the header.
173 WriteImageMethods();
174
175 return true;
176 }
177
FillData(std::vector<uint8_t> & data)178 void FillData(std::vector<uint8_t>& data) {
179 // Note we don't put the header, we only have it reserved in `data` as
180 // Image::WriteData expects the object section to contain the image header.
181 auto compute_dest = [&](const ImageSection& section) {
182 return data.data() + section.Offset();
183 };
184
185 auto objects_section = header_.GetImageSection(ImageHeader::kSectionObjects);
186 memcpy(compute_dest(objects_section) + sizeof(ImageHeader), objects_.data(), objects_.size());
187
188 auto fields_section = header_.GetImageSection(ImageHeader::kSectionArtFields);
189 memcpy(compute_dest(fields_section), art_fields_.data(), fields_section.Size());
190
191 auto methods_section = header_.GetImageSection(ImageHeader::kSectionArtMethods);
192 memcpy(compute_dest(methods_section), art_methods_.data(), methods_section.Size());
193
194 auto im_tables_section = header_.GetImageSection(ImageHeader::kSectionImTables);
195 memcpy(compute_dest(im_tables_section), im_tables_.data(), im_tables_section.Size());
196
197 auto intern_section = header_.GetImageSection(ImageHeader::kSectionInternedStrings);
198 intern_table_.WriteToMemory(compute_dest(intern_section));
199
200 auto class_table_section = header_.GetImageSection(ImageHeader::kSectionClassTable);
201 class_table_.WriteToMemory(compute_dest(class_table_section));
202
203 auto string_offsets_section =
204 header_.GetImageSection(ImageHeader::kSectionStringReferenceOffsets);
205 memcpy(compute_dest(string_offsets_section),
206 string_reference_offsets_.data(),
207 string_offsets_section.Size());
208
209 auto dex_cache_section = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays);
210 memcpy(compute_dest(dex_cache_section), dex_cache_arrays_.data(), dex_cache_section.Size());
211
212 auto metadata_section = header_.GetImageSection(ImageHeader::kSectionMetadata);
213 memcpy(compute_dest(metadata_section), metadata_.data(), metadata_section.Size());
214
215 DCHECK_EQ(metadata_section.Offset() + metadata_section.Size(), data.size());
216 }
217
218
GetHeader()219 ImageHeader* GetHeader() {
220 return &header_;
221 }
222
GetImageBitmap() const223 const gc::accounting::ContinuousSpaceBitmap& GetImageBitmap() const {
224 return image_bitmap_;
225 }
226
GetDexLocation() const227 const std::string& GetDexLocation() const {
228 return dex_location_;
229 }
230
231 private:
IsInBootImage(const void * obj) const232 bool IsInBootImage(const void* obj) const {
233 return reinterpret_cast<uintptr_t>(obj) - boot_image_begin_ < boot_image_size_;
234 }
235
236 // Returns the image contents for `cls`. If `cls` is in the boot image, the
237 // method just returns it.
GetClassContent(ObjPtr<mirror::Class> cls)238 mirror::Class* GetClassContent(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
239 if (cls == nullptr || IsInBootImage(cls.Ptr())) {
240 return cls.Ptr();
241 }
242 const dex::ClassDef* class_def = cls->GetClassDef();
243 DCHECK(class_def != nullptr) << cls->PrettyClass();
244 auto it = classes_.find(class_def);
245 DCHECK(it != classes_.end()) << cls->PrettyClass();
246 mirror::Class* result = reinterpret_cast<mirror::Class*>(objects_.data() + it->second);
247 DCHECK(result->GetClass()->IsClass());
248 return result;
249 }
250
251 // Returns a pointer that can be stored in `objects_`:
252 // - The pointer itself for boot image objects,
253 // - The offset in the image for all other objects.
GetOrComputeImageAddress(ObjPtr<T> object)254 template <typename T> T* GetOrComputeImageAddress(ObjPtr<T> object)
255 REQUIRES_SHARED(Locks::mutator_lock_) {
256 if (object == nullptr || IsInBootImage(object.Ptr())) {
257 DCHECK(object == nullptr || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(object));
258 return object.Ptr();
259 }
260
261 if (object->IsClassLoader()) {
262 // DexCache and Class point to class loaders. For runtime-generated app
263 // images, we don't encode the class loader. It will be set when the
264 // runtime is loading the image.
265 return nullptr;
266 }
267
268 if (object->GetClass() == GetClassRoot<mirror::ClassExt>()) {
269 // No need to encode `ClassExt`. If needed, it will be reconstructed at
270 // runtime.
271 return nullptr;
272 }
273
274 uint32_t offset = 0u;
275 if (object->IsClass()) {
276 offset = CopyClass(object->AsClass());
277 } else if (object->IsDexCache()) {
278 offset = CopyDexCache(object->AsDexCache());
279 } else {
280 offset = CopyObject(object);
281 }
282 return reinterpret_cast<T*>(image_begin_ + sizeof(ImageHeader) + offset);
283 }
284
CreateImageSections()285 void CreateImageSections() {
286 sections_[ImageHeader::kSectionObjects] = ImageSection(0u, object_section_size_);
287 sections_[ImageHeader::kSectionArtFields] =
288 ImageSection(sections_[ImageHeader::kSectionObjects].End(), art_fields_.size());
289
290 // Round up to the alignment for ArtMethod.
291 static_assert(IsAligned<sizeof(void*)>(ArtMethod::Size(kRuntimePointerSize)));
292 size_t cur_pos = RoundUp(sections_[ImageHeader::kSectionArtFields].End(), sizeof(void*));
293 sections_[ImageHeader::kSectionArtMethods] = ImageSection(cur_pos, art_methods_.size());
294
295 // Round up to the alignment for ImTables.
296 cur_pos = RoundUp(sections_[ImageHeader::kSectionArtMethods].End(), sizeof(void*));
297 sections_[ImageHeader::kSectionImTables] = ImageSection(cur_pos, im_tables_.size());
298
299 // Round up to the alignment for conflict tables.
300 cur_pos = RoundUp(sections_[ImageHeader::kSectionImTables].End(), sizeof(void*));
301 sections_[ImageHeader::kSectionIMTConflictTables] = ImageSection(cur_pos, 0u);
302
303 sections_[ImageHeader::kSectionRuntimeMethods] =
304 ImageSection(sections_[ImageHeader::kSectionIMTConflictTables].End(), 0u);
305
306 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
307 cur_pos = RoundUp(sections_[ImageHeader::kSectionRuntimeMethods].End(), sizeof(uint64_t));
308
309 size_t intern_table_bytes = intern_table_.WriteToMemory(nullptr);
310 sections_[ImageHeader::kSectionInternedStrings] = ImageSection(cur_pos, intern_table_bytes);
311
312 // Obtain the new position and round it up to the appropriate alignment.
313 cur_pos = RoundUp(sections_[ImageHeader::kSectionInternedStrings].End(), sizeof(uint64_t));
314
315 size_t class_table_bytes = class_table_.WriteToMemory(nullptr);
316 sections_[ImageHeader::kSectionClassTable] = ImageSection(cur_pos, class_table_bytes);
317
318 // Round up to the alignment of the offsets we are going to store.
319 cur_pos = RoundUp(sections_[ImageHeader::kSectionClassTable].End(), sizeof(uint32_t));
320 sections_[ImageHeader::kSectionStringReferenceOffsets] = ImageSection(
321 cur_pos, string_reference_offsets_.size() * sizeof(string_reference_offsets_[0]));
322
323 // Round up to the alignment dex caches arrays expects.
324 cur_pos =
325 RoundUp(sections_[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(void*));
326 sections_[ImageHeader::kSectionDexCacheArrays] =
327 ImageSection(cur_pos, dex_cache_arrays_.size());
328
329 // Round up to the alignment expected for the metadata, which holds dex
330 // cache arrays.
331 cur_pos = RoundUp(sections_[ImageHeader::kSectionDexCacheArrays].End(), sizeof(void*));
332 sections_[ImageHeader::kSectionMetadata] = ImageSection(cur_pos, metadata_.size());
333 }
334
335 // Returns the copied mirror Object if in the image, or the object directly if
336 // in the boot image. For the copy, this is really its content, it should not
337 // be returned as an `ObjPtr` (as it's not a GC object), nor stored anywhere.
FromImageOffsetToRuntimeContent(uint32_t offset)338 template<typename T> T* FromImageOffsetToRuntimeContent(uint32_t offset) {
339 if (offset == 0u || IsInBootImage(reinterpret_cast<const void*>(offset))) {
340 return reinterpret_cast<T*>(offset);
341 }
342 uint32_t vector_data_offset = FromImageOffsetToVectorOffset(offset);
343 return reinterpret_cast<T*>(objects_.data() + vector_data_offset);
344 }
345
FromImageOffsetToVectorOffset(uint32_t offset) const346 uint32_t FromImageOffsetToVectorOffset(uint32_t offset) const {
347 DCHECK(!IsInBootImage(reinterpret_cast<const void*>(offset)));
348 return offset - sizeof(ImageHeader) - image_begin_;
349 }
350
351 class InternStringHash {
352 public:
InternStringHash(RuntimeImageHelper * helper)353 explicit InternStringHash(RuntimeImageHelper* helper) : helper_(helper) {}
354
355 // NO_THREAD_SAFETY_ANALYSIS as these helpers get passed to `HashSet`.
operator ()(mirror::String * str) const356 size_t operator()(mirror::String* str) const NO_THREAD_SAFETY_ANALYSIS {
357 int32_t hash = str->GetStoredHashCode();
358 DCHECK_EQ(hash, str->ComputeHashCode());
359 // An additional cast to prevent undesired sign extension.
360 return static_cast<uint32_t>(hash);
361 }
362
operator ()(uint32_t entry) const363 size_t operator()(uint32_t entry) const NO_THREAD_SAFETY_ANALYSIS {
364 return (*this)(helper_->FromImageOffsetToRuntimeContent<mirror::String>(entry));
365 }
366
367 private:
368 RuntimeImageHelper* helper_;
369 };
370
371 class InternStringEquals {
372 public:
InternStringEquals(RuntimeImageHelper * helper)373 explicit InternStringEquals(RuntimeImageHelper* helper) : helper_(helper) {}
374
375 // NO_THREAD_SAFETY_ANALYSIS as these helpers get passed to `HashSet`.
operator ()(uint32_t entry,mirror::String * other) const376 bool operator()(uint32_t entry, mirror::String* other) const NO_THREAD_SAFETY_ANALYSIS {
377 if (kIsDebugBuild) {
378 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
379 }
380 return other->Equals(helper_->FromImageOffsetToRuntimeContent<mirror::String>(entry));
381 }
382
operator ()(uint32_t entry,uint32_t other) const383 bool operator()(uint32_t entry, uint32_t other) const NO_THREAD_SAFETY_ANALYSIS {
384 return (*this)(entry, helper_->FromImageOffsetToRuntimeContent<mirror::String>(other));
385 }
386
387 private:
388 RuntimeImageHelper* helper_;
389 };
390
391 using InternTableSet =
392 HashSet<uint32_t, DefaultEmptyFn<uint32_t>, InternStringHash, InternStringEquals>;
393
394 class ClassDescriptorHash {
395 public:
ClassDescriptorHash(RuntimeImageHelper * helper)396 explicit ClassDescriptorHash(RuntimeImageHelper* helper) : helper_(helper) {}
397
operator ()(const ClassTable::TableSlot & slot) const398 uint32_t operator()(const ClassTable::TableSlot& slot) const NO_THREAD_SAFETY_ANALYSIS {
399 uint32_t ptr = slot.NonHashData();
400 if (helper_->IsInBootImage(reinterpret_cast32<const void*>(ptr))) {
401 return reinterpret_cast32<mirror::Class*>(ptr)->DescriptorHash();
402 }
403 return helper_->class_hashes_.Get(helper_->FromImageOffsetToVectorOffset(ptr));
404 }
405
406 private:
407 RuntimeImageHelper* helper_;
408 };
409
410 class ClassDescriptorEquals {
411 public:
ClassDescriptorEquals()412 ClassDescriptorEquals() {}
413
operator ()(const ClassTable::TableSlot & a,const ClassTable::TableSlot & b) const414 bool operator()(const ClassTable::TableSlot& a, const ClassTable::TableSlot& b)
415 const NO_THREAD_SAFETY_ANALYSIS {
416 // No need to fetch the descriptor: we know the classes we are inserting
417 // in the ClassTable are unique.
418 return a.Data() == b.Data();
419 }
420 };
421
422 using ClassTableSet = HashSet<ClassTable::TableSlot,
423 ClassTable::TableSlotEmptyFn,
424 ClassDescriptorHash,
425 ClassDescriptorEquals>;
426
427 // Helper class to collect classes that we will generate in the image.
428 class ClassTableVisitor {
429 public:
ClassTableVisitor(Handle<mirror::ClassLoader> loader,VariableSizedHandleScope & handles)430 ClassTableVisitor(Handle<mirror::ClassLoader> loader, VariableSizedHandleScope& handles)
431 : loader_(loader), handles_(handles) {}
432
operator ()(ObjPtr<mirror::Class> klass)433 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
434 // Record app classes and boot classpath classes: app classes will be
435 // generated in the image and put in the class table, boot classpath
436 // classes will be put in the class table.
437 ObjPtr<mirror::ClassLoader> class_loader = klass->GetClassLoader();
438 if (klass->IsResolved() && (class_loader == loader_.Get() || class_loader == nullptr)) {
439 handles_.NewHandle(klass);
440 }
441 return true;
442 }
443
444 private:
445 Handle<mirror::ClassLoader> loader_;
446 VariableSizedHandleScope& handles_;
447 };
448
449 // Helper class visitor to filter out classes we cannot emit.
450 class PruneVisitor {
451 public:
PruneVisitor(Thread * self,RuntimeImageHelper * helper,const ArenaSet<const DexFile * > & dex_files,ArenaVector<Handle<mirror::Class>> & classes,ArenaAllocator & allocator)452 PruneVisitor(Thread* self,
453 RuntimeImageHelper* helper,
454 const ArenaSet<const DexFile*>& dex_files,
455 ArenaVector<Handle<mirror::Class>>& classes,
456 ArenaAllocator& allocator)
457 : self_(self),
458 helper_(helper),
459 dex_files_(dex_files),
460 visited_(allocator.Adapter()),
461 classes_to_write_(classes) {}
462
CanEmitHelper(Handle<mirror::Class> cls)463 bool CanEmitHelper(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
464 // If the class comes from a dex file which is not part of the primary
465 // APK, don't encode it.
466 if (!ContainsElement(dex_files_, &cls->GetDexFile())) {
467 return false;
468 }
469
470 // Ensure pointers to classes in `cls` can also be emitted.
471 StackHandleScope<1> hs(self_);
472 MutableHandle<mirror::Class> other_class = hs.NewHandle(cls->GetSuperClass());
473 if (!CanEmit(other_class)) {
474 return false;
475 }
476
477 other_class.Assign(cls->GetComponentType());
478 if (!CanEmit(other_class)) {
479 return false;
480 }
481
482 for (size_t i = 0, num_interfaces = cls->NumDirectInterfaces(); i < num_interfaces; ++i) {
483 other_class.Assign(cls->GetDirectInterface(i));
484 DCHECK(other_class != nullptr);
485 if (!CanEmit(other_class)) {
486 return false;
487 }
488 }
489 return true;
490 }
491
CanEmit(Handle<mirror::Class> cls)492 bool CanEmit(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
493 if (cls == nullptr) {
494 return true;
495 }
496 DCHECK(cls->IsResolved());
497 // Only emit classes that are resolved and not erroneous.
498 if (cls->IsErroneous()) {
499 return false;
500 }
501
502 // Proxy classes are generated at runtime, so don't emit them.
503 if (cls->IsProxyClass()) {
504 return false;
505 }
506
507 // Classes in the boot image can be trivially encoded directly.
508 if (helper_->IsInBootImage(cls.Get())) {
509 return true;
510 }
511
512 if (cls->IsBootStrapClassLoaded()) {
513 // We cannot encode classes that are part of the boot classpath.
514 return false;
515 }
516
517 DCHECK(!cls->IsPrimitive());
518
519 if (cls->IsArrayClass()) {
520 if (cls->IsBootStrapClassLoaded()) {
521 // For boot classpath arrays, we can only emit them if they are
522 // in the boot image already.
523 return helper_->IsInBootImage(cls.Get());
524 }
525 ObjPtr<mirror::Class> temp = cls.Get();
526 while ((temp = temp->GetComponentType())->IsArrayClass()) {}
527 StackHandleScope<1> hs(self_);
528 Handle<mirror::Class> other_class = hs.NewHandle(temp);
529 return CanEmit(other_class);
530 }
531 const dex::ClassDef* class_def = cls->GetClassDef();
532 DCHECK_NE(class_def, nullptr);
533 auto existing = visited_.find(class_def);
534 if (existing != visited_.end()) {
535 // Already processed;
536 return existing->second == VisitState::kCanEmit;
537 }
538
539 visited_.Put(class_def, VisitState::kVisiting);
540 if (CanEmitHelper(cls)) {
541 visited_.Overwrite(class_def, VisitState::kCanEmit);
542 return true;
543 } else {
544 visited_.Overwrite(class_def, VisitState::kCannotEmit);
545 return false;
546 }
547 }
548
Visit(Handle<mirror::Object> obj)549 void Visit(Handle<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_) {
550 MutableHandle<mirror::Class> cls(obj.GetReference());
551 if (CanEmit(cls)) {
552 if (cls->IsBootStrapClassLoaded()) {
553 DCHECK(helper_->IsInBootImage(cls.Get()));
554 // Insert the bootclasspath class in the class table.
555 uint32_t hash = cls->DescriptorHash();
556 helper_->class_table_.InsertWithHash(ClassTable::TableSlot(cls.Get(), hash), hash);
557 } else {
558 classes_to_write_.push_back(cls);
559 }
560 }
561 }
562
563 private:
564 enum class VisitState {
565 kVisiting,
566 kCanEmit,
567 kCannotEmit,
568 };
569
570 Thread* const self_;
571 RuntimeImageHelper* const helper_;
572 const ArenaSet<const DexFile*>& dex_files_;
573 ArenaSafeMap<const dex::ClassDef*, VisitState> visited_;
574 ArenaVector<Handle<mirror::Class>>& classes_to_write_;
575 };
576
EmitClasses(Thread * self,Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array)577 void EmitClasses(Thread* self, Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array)
578 REQUIRES_SHARED(Locks::mutator_lock_) {
579 ScopedTrace trace("Emit strings and classes");
580 ArenaSet<const DexFile*> dex_files(allocator_.Adapter());
581 for (int32_t i = 0; i < dex_cache_array->GetLength(); ++i) {
582 dex_files.insert(dex_cache_array->Get(i)->AsDexCache()->GetDexFile());
583 }
584
585 StackHandleScope<1> hs(self);
586 Handle<mirror::ClassLoader> loader = hs.NewHandle(
587 dex_cache_array->Get(0)->AsDexCache()->GetClassLoader());
588 ClassTable* const class_table = loader->GetClassTable();
589 if (class_table == nullptr) {
590 return;
591 }
592
593 VariableSizedHandleScope handles(self);
594 {
595 ClassTableVisitor class_table_visitor(loader, handles);
596 class_table->Visit(class_table_visitor);
597 }
598
599 ArenaVector<Handle<mirror::Class>> classes_to_write(allocator_.Adapter());
600 classes_to_write.reserve(class_table->Size());
601 {
602 PruneVisitor prune_visitor(self, this, dex_files, classes_to_write, allocator_);
603 handles.VisitHandles(prune_visitor);
604 }
605
606 for (Handle<mirror::Class> cls : classes_to_write) {
607 {
608 ScopedAssertNoThreadSuspension sants("Writing class");
609 CopyClass(cls.Get());
610 }
611 self->AllowThreadSuspension();
612 }
613
614 // Relocate the type array entries. We do this now before creating image
615 // sections because we may add new boot image classes into our
616 // `class_table`_.
617 for (auto entry : dex_caches_) {
618 const DexFile& dex_file = *entry.first;
619 mirror::DexCache* cache = reinterpret_cast<mirror::DexCache*>(&objects_[entry.second]);
620 mirror::GcRootArray<mirror::Class>* old_types_array = cache->GetResolvedTypesArray();
621 if (HasNativeRelocation(old_types_array)) {
622 auto reloc_it = native_relocations_.find(old_types_array);
623 DCHECK(reloc_it != native_relocations_.end());
624 ArenaVector<uint8_t>& data =
625 (reloc_it->second.first == NativeRelocationKind::kFullNativeDexCacheArray)
626 ? dex_cache_arrays_ : metadata_;
627 mirror::GcRootArray<mirror::Class>* content_array =
628 reinterpret_cast<mirror::GcRootArray<mirror::Class>*>(
629 data.data() + reloc_it->second.second);
630 for (uint32_t i = 0; i < dex_file.NumTypeIds(); ++i) {
631 ObjPtr<mirror::Class> cls = old_types_array->Get(i);
632 if (cls == nullptr) {
633 content_array->Set(i, nullptr);
634 } else if (IsInBootImage(cls.Ptr())) {
635 if (!cls->IsPrimitive()) {
636 // The dex cache is concurrently updated by the app. If the class
637 // collection logic in `PruneVisitor` did not see this class, insert it now.
638 // Note that application class tables do not contain primitive
639 // classes.
640 uint32_t hash = cls->DescriptorHash();
641 class_table_.InsertWithHash(ClassTable::TableSlot(cls.Ptr(), hash), hash);
642 }
643 content_array->Set(i, cls.Ptr());
644 } else if (cls->IsArrayClass()) {
645 std::string class_name;
646 cls->GetDescriptor(&class_name);
647 auto class_it = array_classes_.find(class_name);
648 if (class_it == array_classes_.end()) {
649 content_array->Set(i, nullptr);
650 } else {
651 mirror::Class* ptr = reinterpret_cast<mirror::Class*>(
652 image_begin_ + sizeof(ImageHeader) + class_it->second);
653 content_array->Set(i, ptr);
654 }
655 } else {
656 DCHECK(!cls->IsPrimitive());
657 DCHECK(!cls->IsProxyClass());
658 const dex::ClassDef* class_def = cls->GetClassDef();
659 DCHECK_NE(class_def, nullptr);
660 auto class_it = classes_.find(class_def);
661 if (class_it == classes_.end()) {
662 content_array->Set(i, nullptr);
663 } else {
664 mirror::Class* ptr = reinterpret_cast<mirror::Class*>(
665 image_begin_ + sizeof(ImageHeader) + class_it->second);
666 content_array->Set(i, ptr);
667 }
668 }
669 }
670 }
671 }
672 }
673
674 // Helper visitor returning the location of a native pointer in the image.
675 class NativePointerVisitor {
676 public:
NativePointerVisitor(RuntimeImageHelper * helper)677 explicit NativePointerVisitor(RuntimeImageHelper* helper) : helper_(helper) {}
678
679 template <typename T>
operator ()(T * ptr,void ** dest_addr) const680 T* operator()(T* ptr, [[maybe_unused]] void** dest_addr) const {
681 return helper_->NativeLocationInImage(ptr, /* must_have_relocation= */ true);
682 }
683
operator ()(T * ptr,bool must_have_relocation=true) const684 template <typename T> T* operator()(T* ptr, bool must_have_relocation = true) const {
685 return helper_->NativeLocationInImage(ptr, must_have_relocation);
686 }
687
688 private:
689 RuntimeImageHelper* helper_;
690 };
691
NativeLocationInImage(T * ptr,bool must_have_relocation) const692 template <typename T> T* NativeLocationInImage(T* ptr, bool must_have_relocation) const {
693 if (ptr == nullptr || IsInBootImage(ptr)) {
694 return ptr;
695 }
696
697 auto it = native_relocations_.find(ptr);
698 if (it == native_relocations_.end()) {
699 DCHECK(!must_have_relocation);
700 return nullptr;
701 }
702 switch (it->second.first) {
703 case NativeRelocationKind::kArtMethod:
704 case NativeRelocationKind::kArtMethodArray: {
705 uint32_t offset = sections_[ImageHeader::kSectionArtMethods].Offset();
706 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
707 }
708 case NativeRelocationKind::kArtFieldArray: {
709 uint32_t offset = sections_[ImageHeader::kSectionArtFields].Offset();
710 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
711 }
712 case NativeRelocationKind::kImTable: {
713 uint32_t offset = sections_[ImageHeader::kSectionImTables].Offset();
714 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
715 }
716 case NativeRelocationKind::kStartupNativeDexCacheArray: {
717 uint32_t offset = sections_[ImageHeader::kSectionMetadata].Offset();
718 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
719 }
720 case NativeRelocationKind::kFullNativeDexCacheArray: {
721 uint32_t offset = sections_[ImageHeader::kSectionDexCacheArrays].Offset();
722 return reinterpret_cast<T*>(image_begin_ + offset + it->second.second);
723 }
724 }
725 }
726
727 template <typename Visitor>
RelocateMethodPointerArrays(mirror::Class * klass,const Visitor & visitor)728 void RelocateMethodPointerArrays(mirror::Class* klass, const Visitor& visitor)
729 REQUIRES_SHARED(Locks::mutator_lock_) {
730 // A bit of magic here: we cast contents from our buffer to mirror::Class,
731 // and do pointer comparison between 1) these classes, and 2) boot image objects.
732 // Both kinds do not move.
733
734 // See if we need to fixup the vtable field.
735 mirror::Class* super = FromImageOffsetToRuntimeContent<mirror::Class>(
736 reinterpret_cast32<uint32_t>(
737 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>().Ptr()));
738 DCHECK(super != nullptr) << "j.l.Object should never be in an app runtime image";
739 mirror::PointerArray* vtable = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
740 reinterpret_cast32<uint32_t>(klass->GetVTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
741 mirror::PointerArray* super_vtable = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
742 reinterpret_cast32<uint32_t>(super->GetVTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
743 if (vtable != nullptr && vtable != super_vtable) {
744 DCHECK(!IsInBootImage(vtable));
745 vtable->Fixup(vtable, kRuntimePointerSize, visitor);
746 }
747
748 // See if we need to fixup entries in the IfTable.
749 mirror::IfTable* iftable = FromImageOffsetToRuntimeContent<mirror::IfTable>(
750 reinterpret_cast32<uint32_t>(
751 klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
752 mirror::IfTable* super_iftable = FromImageOffsetToRuntimeContent<mirror::IfTable>(
753 reinterpret_cast32<uint32_t>(
754 super->GetIfTable<kVerifyNone, kWithoutReadBarrier>().Ptr()));
755 int32_t iftable_count = iftable->Count();
756 int32_t super_iftable_count = super_iftable->Count();
757 for (int32_t i = 0; i < iftable_count; ++i) {
758 mirror::PointerArray* methods = FromImageOffsetToRuntimeContent<mirror::PointerArray>(
759 reinterpret_cast32<uint32_t>(
760 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i).Ptr()));
761 mirror::PointerArray* super_methods = (i < super_iftable_count)
762 ? FromImageOffsetToRuntimeContent<mirror::PointerArray>(
763 reinterpret_cast32<uint32_t>(
764 super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i).Ptr()))
765 : nullptr;
766 if (methods != super_methods) {
767 DCHECK(!IsInBootImage(methods));
768 methods->Fixup(methods, kRuntimePointerSize, visitor);
769 }
770 }
771 }
772
773 template <typename Visitor, typename T>
RelocateNativeDexCacheArray(mirror::NativeArray<T> * old_method_array,uint32_t num_ids,const Visitor & visitor)774 void RelocateNativeDexCacheArray(mirror::NativeArray<T>* old_method_array,
775 uint32_t num_ids,
776 const Visitor& visitor)
777 REQUIRES_SHARED(Locks::mutator_lock_) {
778 if (old_method_array == nullptr) {
779 return;
780 }
781
782 auto it = native_relocations_.find(old_method_array);
783 DCHECK(it != native_relocations_.end());
784 ArenaVector<uint8_t>& data =
785 (it->second.first == NativeRelocationKind::kFullNativeDexCacheArray)
786 ? dex_cache_arrays_ : metadata_;
787
788 mirror::NativeArray<T>* content_array =
789 reinterpret_cast<mirror::NativeArray<T>*>(data.data() + it->second.second);
790 for (uint32_t i = 0; i < num_ids; ++i) {
791 // We may not have relocations for some entries, in which case we'll
792 // just store null.
793 content_array->Set(i, visitor(content_array->Get(i), /* must_have_relocation= */ false));
794 }
795 }
796
797 template <typename Visitor>
RelocateDexCacheArrays(mirror::DexCache * cache,const DexFile & dex_file,const Visitor & visitor)798 void RelocateDexCacheArrays(mirror::DexCache* cache,
799 const DexFile& dex_file,
800 const Visitor& visitor)
801 REQUIRES_SHARED(Locks::mutator_lock_) {
802 mirror::NativeArray<ArtMethod>* old_method_array = cache->GetResolvedMethodsArray();
803 cache->SetResolvedMethodsArray(visitor(old_method_array));
804 RelocateNativeDexCacheArray(old_method_array, dex_file.NumMethodIds(), visitor);
805
806 mirror::NativeArray<ArtField>* old_field_array = cache->GetResolvedFieldsArray();
807 cache->SetResolvedFieldsArray(visitor(old_field_array));
808 RelocateNativeDexCacheArray(old_field_array, dex_file.NumFieldIds(), visitor);
809
810 mirror::GcRootArray<mirror::String>* old_strings_array = cache->GetStringsArray();
811 cache->SetStringsArray(visitor(old_strings_array));
812
813 mirror::GcRootArray<mirror::Class>* old_types_array = cache->GetResolvedTypesArray();
814 cache->SetResolvedTypesArray(visitor(old_types_array));
815 }
816
RelocateNativePointers()817 void RelocateNativePointers() {
818 ScopedTrace relocate_native_pointers("Relocate native pointers");
819 ScopedObjectAccess soa(Thread::Current());
820 NativePointerVisitor visitor(this);
821 for (auto&& entry : classes_) {
822 mirror::Class* cls = reinterpret_cast<mirror::Class*>(&objects_[entry.second]);
823 cls->FixupNativePointers(cls, kRuntimePointerSize, visitor);
824 RelocateMethodPointerArrays(cls, visitor);
825 }
826 for (auto&& entry : array_classes_) {
827 mirror::Class* cls = reinterpret_cast<mirror::Class*>(&objects_[entry.second]);
828 cls->FixupNativePointers(cls, kRuntimePointerSize, visitor);
829 RelocateMethodPointerArrays(cls, visitor);
830 }
831 for (auto&& entry : native_relocations_) {
832 if (entry.second.first == NativeRelocationKind::kImTable) {
833 ImTable* im_table = reinterpret_cast<ImTable*>(im_tables_.data() + entry.second.second);
834 RelocateImTable(im_table, visitor);
835 }
836 }
837 for (auto&& entry : dex_caches_) {
838 mirror::DexCache* cache = reinterpret_cast<mirror::DexCache*>(&objects_[entry.second]);
839 RelocateDexCacheArrays(cache, *entry.first, visitor);
840 }
841 }
842
RelocateImTable(ImTable * im_table,const NativePointerVisitor & visitor)843 void RelocateImTable(ImTable* im_table, const NativePointerVisitor& visitor) {
844 for (size_t i = 0; i < ImTable::kSize; ++i) {
845 ArtMethod* method = im_table->Get(i, kRuntimePointerSize);
846 ArtMethod* new_method = nullptr;
847 if (method->IsRuntimeMethod() && !IsInBootImage(method)) {
848 // New IMT conflict method: just use the boot image version.
849 // TODO: Consider copying the new IMT conflict method.
850 new_method = Runtime::Current()->GetImtConflictMethod();
851 DCHECK(IsInBootImage(new_method));
852 } else {
853 new_method = visitor(method);
854 }
855 if (method != new_method) {
856 im_table->Set(i, new_method, kRuntimePointerSize);
857 }
858 }
859 }
860
CopyFieldArrays(ObjPtr<mirror::Class> cls,uint32_t class_image_address)861 void CopyFieldArrays(ObjPtr<mirror::Class> cls, uint32_t class_image_address)
862 REQUIRES_SHARED(Locks::mutator_lock_) {
863 LengthPrefixedArray<ArtField>* fields[] = {
864 cls->GetSFieldsPtr(), cls->GetIFieldsPtr(),
865 };
866 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
867 if (cur_fields != nullptr) {
868 // Copy the array.
869 size_t number_of_fields = cur_fields->size();
870 size_t size = LengthPrefixedArray<ArtField>::ComputeSize(number_of_fields);
871 size_t offset = art_fields_.size();
872 art_fields_.resize(offset + size);
873 auto* dest_array =
874 reinterpret_cast<LengthPrefixedArray<ArtField>*>(art_fields_.data() + offset);
875 memcpy(dest_array, cur_fields, size);
876 native_relocations_.Put(cur_fields,
877 std::make_pair(NativeRelocationKind::kArtFieldArray, offset));
878
879 // Update the class pointer of individual fields.
880 for (size_t i = 0; i != number_of_fields; ++i) {
881 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier()->Assign(
882 reinterpret_cast<mirror::Class*>(class_image_address));
883 }
884 }
885 }
886 }
887
CopyMethodArrays(ObjPtr<mirror::Class> cls,uint32_t class_image_address,bool is_class_initialized)888 void CopyMethodArrays(ObjPtr<mirror::Class> cls,
889 uint32_t class_image_address,
890 bool is_class_initialized)
891 REQUIRES_SHARED(Locks::mutator_lock_) {
892 size_t number_of_methods = cls->NumMethods();
893 if (number_of_methods == 0) {
894 return;
895 }
896
897 size_t size = LengthPrefixedArray<ArtMethod>::ComputeSize(number_of_methods);
898 size_t offset = art_methods_.size();
899 art_methods_.resize(offset + size);
900 auto* dest_array =
901 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(art_methods_.data() + offset);
902 memcpy(dest_array, cls->GetMethodsPtr(), size);
903 native_relocations_.Put(cls->GetMethodsPtr(),
904 std::make_pair(NativeRelocationKind::kArtMethodArray, offset));
905
906 for (size_t i = 0; i != number_of_methods; ++i) {
907 ArtMethod* method = &cls->GetMethodsPtr()->At(i);
908 ArtMethod* copy = &dest_array->At(i);
909
910 // Update the class pointer.
911 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
912 if (declaring_class == cls) {
913 copy->GetDeclaringClassAddressWithoutBarrier()->Assign(
914 reinterpret_cast<mirror::Class*>(class_image_address));
915 } else {
916 DCHECK(method->IsCopied());
917 if (!IsInBootImage(declaring_class.Ptr())) {
918 DCHECK(classes_.find(declaring_class->GetClassDef()) != classes_.end());
919 copy->GetDeclaringClassAddressWithoutBarrier()->Assign(
920 reinterpret_cast<mirror::Class*>(
921 image_begin_ +
922 sizeof(ImageHeader) +
923 classes_.Get(declaring_class->GetClassDef())));
924 }
925 }
926
927 // Record the native relocation of the method.
928 uintptr_t copy_offset =
929 reinterpret_cast<uintptr_t>(copy) - reinterpret_cast<uintptr_t>(art_methods_.data());
930 native_relocations_.Put(method,
931 std::make_pair(NativeRelocationKind::kArtMethod, copy_offset));
932
933 // Ignore the single-implementation info for abstract method.
934 if (method->IsAbstract()) {
935 copy->SetHasSingleImplementation(false);
936 copy->SetSingleImplementation(nullptr, kRuntimePointerSize);
937 }
938
939 // Set the entrypoint and data pointer of the method.
940 StubType stub;
941 if (method->IsNative()) {
942 stub = StubType::kQuickGenericJNITrampoline;
943 } else if (!cls->IsVerified()) {
944 stub = StubType::kQuickToInterpreterBridge;
945 } else if (!is_class_initialized && method->NeedsClinitCheckBeforeCall()) {
946 stub = StubType::kQuickResolutionTrampoline;
947 } else if (interpreter::IsNterpSupported() && CanMethodUseNterp(method)) {
948 stub = StubType::kNterpTrampoline;
949 } else {
950 stub = StubType::kQuickToInterpreterBridge;
951 }
952 const std::vector<gc::space::ImageSpace*>& image_spaces =
953 Runtime::Current()->GetHeap()->GetBootImageSpaces();
954 DCHECK(!image_spaces.empty());
955 const OatFile* oat_file = image_spaces[0]->GetOatFile();
956 DCHECK(oat_file != nullptr);
957 const OatHeader& header = oat_file->GetOatHeader();
958 const void* entrypoint = header.GetOatAddress(stub);
959 if (method->IsNative() && (is_class_initialized || !method->NeedsClinitCheckBeforeCall())) {
960 // Use boot JNI stub if found.
961 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
962 const void* boot_jni_stub = class_linker->FindBootJniStub(method);
963 if (boot_jni_stub != nullptr) {
964 entrypoint = boot_jni_stub;
965 }
966 }
967 copy->SetNativePointer(ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRuntimePointerSize),
968 entrypoint,
969 kRuntimePointerSize);
970
971 if (method->IsNative()) {
972 StubType stub_type = method->IsCriticalNative()
973 ? StubType::kJNIDlsymLookupCriticalTrampoline
974 : StubType::kJNIDlsymLookupTrampoline;
975 copy->SetEntryPointFromJni(header.GetOatAddress(stub_type));
976 } else if (method->HasCodeItem()) {
977 const uint8_t* code_item = reinterpret_cast<const uint8_t*>(method->GetCodeItem());
978 DCHECK_GE(code_item, method->GetDexFile()->DataBegin());
979 uint32_t code_item_offset = dchecked_integral_cast<uint32_t>(
980 code_item - method->GetDexFile()->DataBegin());;
981 copy->SetDataPtrSize(
982 reinterpret_cast<const void*>(code_item_offset), kRuntimePointerSize);
983 }
984 }
985 }
986
CopyImTable(ObjPtr<mirror::Class> cls)987 void CopyImTable(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
988 ImTable* table = cls->GetImt(kRuntimePointerSize);
989
990 // If the table is null or shared and/or already emitted, we can skip.
991 if (table == nullptr || IsInBootImage(table) || HasNativeRelocation(table)) {
992 return;
993 }
994 const size_t size = ImTable::SizeInBytes(kRuntimePointerSize);
995 size_t offset = im_tables_.size();
996 im_tables_.resize(offset + size);
997 uint8_t* dest = im_tables_.data() + offset;
998 memcpy(dest, table, size);
999 native_relocations_.Put(table, std::make_pair(NativeRelocationKind::kImTable, offset));
1000 }
1001
HasNativeRelocation(void * ptr) const1002 bool HasNativeRelocation(void* ptr) const {
1003 return native_relocations_.find(ptr) != native_relocations_.end();
1004 }
1005
1006
LoadClassesFromReferenceProfile(Thread * self,const dchecked_vector<Handle<mirror::DexCache>> & dex_caches)1007 static void LoadClassesFromReferenceProfile(
1008 Thread* self,
1009 const dchecked_vector<Handle<mirror::DexCache>>& dex_caches)
1010 REQUIRES_SHARED(Locks::mutator_lock_) {
1011 AppInfo* app_info = Runtime::Current()->GetAppInfo();
1012 std::string profile_file = app_info->GetPrimaryApkReferenceProfile();
1013
1014 if (profile_file.empty()) {
1015 return;
1016 }
1017
1018 // Lock the file, it could be concurrently updated by the system. Don't block
1019 // as this is app startup sensitive.
1020 std::string error;
1021 ScopedFlock profile =
1022 LockedFile::Open(profile_file.c_str(), O_RDONLY, /*block=*/false, &error);
1023
1024 if (profile == nullptr) {
1025 LOG(DEBUG) << "Couldn't lock the profile file " << profile_file << ": " << error;
1026 return;
1027 }
1028
1029 ProfileCompilationInfo profile_info(/* for_boot_image= */ false);
1030
1031 if (!profile_info.Load(profile->Fd())) {
1032 LOG(DEBUG) << "Could not load profile file";
1033 return;
1034 }
1035
1036 StackHandleScope<1> hs(self);
1037 Handle<mirror::ClassLoader> class_loader =
1038 hs.NewHandle<mirror::ClassLoader>(dex_caches[0]->GetClassLoader());
1039 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1040 ScopedTrace loading_classes("Loading classes from profile");
1041 for (auto dex_cache : dex_caches) {
1042 const DexFile* dex_file = dex_cache->GetDexFile();
1043 const ArenaSet<dex::TypeIndex>* class_types = profile_info.GetClasses(*dex_file);
1044 if (class_types == nullptr) {
1045 // This means the profile file did not reference the dex file, which is the case
1046 // if there's no classes and methods of that dex file in the profile.
1047 continue;
1048 }
1049
1050 for (dex::TypeIndex idx : *class_types) {
1051 // The index is greater or equal to NumTypeIds if the type is an extra
1052 // descriptor, not referenced by the dex file.
1053 if (idx.index_ < dex_file->NumTypeIds()) {
1054 ObjPtr<mirror::Class> klass = class_linker->ResolveType(idx, dex_cache, class_loader);
1055 if (klass == nullptr) {
1056 self->ClearException();
1057 LOG(DEBUG) << "Failed to preload " << dex_file->PrettyType(idx);
1058 continue;
1059 }
1060 }
1061 }
1062 }
1063 }
1064
WriteObjects(std::string * error_msg)1065 bool WriteObjects(std::string* error_msg) {
1066 ScopedTrace write_objects("Writing objects");
1067 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1068 ScopedObjectAccess soa(Thread::Current());
1069 VariableSizedHandleScope handles(soa.Self());
1070
1071 Handle<mirror::Class> object_array_class = handles.NewHandle(
1072 GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
1073
1074 Handle<mirror::ObjectArray<mirror::Object>> image_roots = handles.NewHandle(
1075 mirror::ObjectArray<mirror::Object>::Alloc(
1076 soa.Self(), object_array_class.Get(), ImageHeader::kImageRootsMax));
1077
1078 if (image_roots == nullptr) {
1079 DCHECK(soa.Self()->IsExceptionPending());
1080 soa.Self()->ClearException();
1081 *error_msg = "Out of memory when trying to generate a runtime app image";
1082 return false;
1083 }
1084
1085 // Find the dex files that will be used for generating the app image.
1086 dchecked_vector<Handle<mirror::DexCache>> dex_caches;
1087 FindDexCaches(soa.Self(), dex_caches, handles);
1088
1089 if (dex_caches.size() == 0) {
1090 *error_msg = "Did not find dex caches to generate an app image";
1091 return false;
1092 }
1093 const OatDexFile* oat_dex_file = dex_caches[0]->GetDexFile()->GetOatDexFile();
1094 VdexFile* vdex_file = oat_dex_file->GetOatFile()->GetVdexFile();
1095 // The first entry in `dex_caches` contains the location of the primary APK.
1096 dex_location_ = oat_dex_file->GetDexFileLocation();
1097
1098 size_t number_of_dex_files = vdex_file->GetNumberOfDexFiles();
1099 if (number_of_dex_files != dex_caches.size()) {
1100 // This means some dex files haven't been executed. For simplicity, just
1101 // register them and recollect dex caches.
1102 Handle<mirror::ClassLoader> loader = handles.NewHandle(dex_caches[0]->GetClassLoader());
1103 VisitClassLoaderDexFiles(soa.Self(), loader, [&](const art::DexFile* dex_file)
1104 REQUIRES_SHARED(Locks::mutator_lock_) {
1105 class_linker->RegisterDexFile(*dex_file, dex_caches[0]->GetClassLoader());
1106 return true; // Continue with other dex files.
1107 });
1108 dex_caches.clear();
1109 FindDexCaches(soa.Self(), dex_caches, handles);
1110 if (number_of_dex_files != dex_caches.size()) {
1111 *error_msg = "Number of dex caches does not match number of dex files in the primary APK";
1112 return false;
1113 }
1114 }
1115
1116 // If classes referenced in the reference profile are not loaded, preload
1117 // them. This makes sure we generate a good runtime app image, even if this
1118 // current app run did not load all startup classes.
1119 LoadClassesFromReferenceProfile(soa.Self(), dex_caches);
1120
1121 // We store the checksums of the dex files used at runtime. These can be
1122 // different compared to the vdex checksums due to compact dex.
1123 std::vector<uint32_t> checksums(number_of_dex_files);
1124 uint32_t checksum_index = 0;
1125 for (const OatDexFile* current_oat_dex_file : oat_dex_file->GetOatFile()->GetOatDexFiles()) {
1126 const DexFile::Header* header =
1127 reinterpret_cast<const DexFile::Header*>(current_oat_dex_file->GetDexFilePointer());
1128 checksums[checksum_index++] = header->checksum_;
1129 }
1130 DCHECK_EQ(checksum_index, number_of_dex_files);
1131
1132 // Create the fake OatHeader to store the dependencies of the image.
1133 SafeMap<std::string, std::string> key_value_store;
1134 Runtime* runtime = Runtime::Current();
1135 key_value_store.Put(OatHeader::kApexVersionsKey, runtime->GetApexVersions());
1136 key_value_store.Put(OatHeader::kBootClassPathKey,
1137 android::base::Join(runtime->GetBootClassPathLocations(), ':'));
1138 key_value_store.Put(OatHeader::kBootClassPathChecksumsKey,
1139 runtime->GetBootClassPathChecksums());
1140 key_value_store.Put(OatHeader::kClassPathKey,
1141 oat_dex_file->GetOatFile()->GetClassLoaderContext());
1142 key_value_store.Put(OatHeader::kConcurrentCopying,
1143 gUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue);
1144
1145 std::unique_ptr<const InstructionSetFeatures> isa_features =
1146 InstructionSetFeatures::FromCppDefines();
1147 std::unique_ptr<OatHeader> oat_header(
1148 OatHeader::Create(kRuntimeISA,
1149 isa_features.get(),
1150 number_of_dex_files,
1151 &key_value_store));
1152
1153 // Create the byte array containing the oat header and dex checksums.
1154 uint32_t checksums_size = checksums.size() * sizeof(uint32_t);
1155 Handle<mirror::ByteArray> header_data = handles.NewHandle(
1156 mirror::ByteArray::Alloc(soa.Self(), oat_header->GetHeaderSize() + checksums_size));
1157
1158 if (header_data == nullptr) {
1159 DCHECK(soa.Self()->IsExceptionPending());
1160 soa.Self()->ClearException();
1161 *error_msg = "Out of memory when trying to generate a runtime app image";
1162 return false;
1163 }
1164
1165 memcpy(header_data->GetData(), oat_header.get(), oat_header->GetHeaderSize());
1166 memcpy(header_data->GetData() + oat_header->GetHeaderSize(), checksums.data(), checksums_size);
1167
1168 // Create and populate the dex caches aray.
1169 Handle<mirror::ObjectArray<mirror::Object>> dex_cache_array = handles.NewHandle(
1170 mirror::ObjectArray<mirror::Object>::Alloc(
1171 soa.Self(), object_array_class.Get(), dex_caches.size()));
1172
1173 if (dex_cache_array == nullptr) {
1174 DCHECK(soa.Self()->IsExceptionPending());
1175 soa.Self()->ClearException();
1176 *error_msg = "Out of memory when trying to generate a runtime app image";
1177 return false;
1178 }
1179
1180 for (uint32_t i = 0; i < dex_caches.size(); ++i) {
1181 dex_cache_array->Set(i, dex_caches[i].Get());
1182 }
1183
1184 image_roots->Set(ImageHeader::kDexCaches, dex_cache_array.Get());
1185 image_roots->Set(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1186 image_roots->Set(ImageHeader::kAppImageOatHeader, header_data.Get());
1187
1188 {
1189 // Now that we have created all objects needed for the `image_roots`, copy
1190 // it into the buffer. Note that this will recursively copy all objects
1191 // contained in `image_roots`. That's acceptable as we don't have cycles,
1192 // nor a deep graph.
1193 ScopedAssertNoThreadSuspension sants("Writing runtime app image");
1194 CopyObject(image_roots.Get());
1195 }
1196
1197 // Emit classes defined in the app class loader (which will also indirectly
1198 // emit dex caches and their arrays).
1199 EmitClasses(soa.Self(), dex_cache_array);
1200
1201 return true;
1202 }
1203
1204 class FixupVisitor {
1205 public:
FixupVisitor(RuntimeImageHelper * image,size_t copy_offset)1206 FixupVisitor(RuntimeImageHelper* image, size_t copy_offset)
1207 : image_(image), copy_offset_(copy_offset) {}
1208
1209 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1210 void VisitRootIfNonNull(
1211 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1212 LOG(FATAL) << "UNREACHABLE";
1213 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1214 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1215 LOG(FATAL) << "UNREACHABLE";
1216 }
1217
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1218 void operator()(ObjPtr<mirror::Object> obj,
1219 MemberOffset offset,
1220 bool is_static) const
1221 REQUIRES_SHARED(Locks::mutator_lock_) {
1222 // We don't copy static fields, they are being handled when we try to
1223 // initialize the class.
1224 ObjPtr<mirror::Object> ref =
1225 is_static ? nullptr : obj->GetFieldObject<mirror::Object>(offset);
1226 mirror::Object* address = image_->GetOrComputeImageAddress(ref);
1227 mirror::Object* copy =
1228 reinterpret_cast<mirror::Object*>(image_->objects_.data() + copy_offset_);
1229 copy->GetFieldObjectReferenceAddr<kVerifyNone>(offset)->Assign(address);
1230 }
1231
1232 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1233 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
1234 ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1235 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1236 }
1237
1238 private:
1239 RuntimeImageHelper* image_;
1240 size_t copy_offset_;
1241 };
1242
1243 template <typename T>
CopyNativeDexCacheArray(uint32_t num_entries,uint32_t max_entries,mirror::NativeArray<T> * array)1244 void CopyNativeDexCacheArray(uint32_t num_entries,
1245 uint32_t max_entries,
1246 mirror::NativeArray<T>* array) {
1247 if (array == nullptr) {
1248 return;
1249 }
1250
1251 bool only_startup = !mirror::DexCache::ShouldAllocateFullArray(num_entries, max_entries);
1252 ArenaVector<uint8_t>& data = only_startup ? metadata_ : dex_cache_arrays_;
1253 NativeRelocationKind relocation_kind = only_startup
1254 ? NativeRelocationKind::kStartupNativeDexCacheArray
1255 : NativeRelocationKind::kFullNativeDexCacheArray;
1256
1257 size_t size = num_entries * sizeof(void*);
1258 // We need to reserve space to store `num_entries` because ImageSpace doesn't have
1259 // access to the dex files when relocating dex caches.
1260 size_t offset = RoundUp(data.size(), sizeof(void*)) + sizeof(uintptr_t);
1261 data.resize(RoundUp(data.size(), sizeof(void*)) + sizeof(uintptr_t) + size);
1262 reinterpret_cast<uintptr_t*>(data.data() + offset)[-1] = num_entries;
1263
1264 // Copy each entry individually. We cannot use memcpy, as the entries may be
1265 // updated concurrently by other mutator threads.
1266 mirror::NativeArray<T>* copy = reinterpret_cast<mirror::NativeArray<T>*>(data.data() + offset);
1267 for (uint32_t i = 0; i < num_entries; ++i) {
1268 copy->Set(i, array->Get(i));
1269 }
1270 native_relocations_.Put(array, std::make_pair(relocation_kind, offset));
1271 }
1272
1273 template <typename T>
CreateGcRootDexCacheArray(uint32_t num_entries,uint32_t max_entries,mirror::GcRootArray<T> * array)1274 mirror::GcRootArray<T>* CreateGcRootDexCacheArray(uint32_t num_entries,
1275 uint32_t max_entries,
1276 mirror::GcRootArray<T>* array) {
1277 if (array == nullptr) {
1278 return nullptr;
1279 }
1280 bool only_startup = !mirror::DexCache::ShouldAllocateFullArray(num_entries, max_entries);
1281 ArenaVector<uint8_t>& data = only_startup ? metadata_ : dex_cache_arrays_;
1282 NativeRelocationKind relocation_kind = only_startup
1283 ? NativeRelocationKind::kStartupNativeDexCacheArray
1284 : NativeRelocationKind::kFullNativeDexCacheArray;
1285 size_t size = num_entries * sizeof(GcRoot<T>);
1286 // We need to reserve space to store `num_entries` because ImageSpace doesn't have
1287 // access to the dex files when relocating dex caches.
1288 static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t));
1289 size_t offset = data.size() + sizeof(uint32_t);
1290 data.resize(data.size() + sizeof(uint32_t) + size);
1291 reinterpret_cast<uint32_t*>(data.data() + offset)[-1] = num_entries;
1292 native_relocations_.Put(array, std::make_pair(relocation_kind, offset));
1293
1294 return reinterpret_cast<mirror::GcRootArray<T>*>(data.data() + offset);
1295 }
EmitDexCacheArrays()1296 static bool EmitDexCacheArrays() {
1297 // We need to treat dex cache arrays specially in an image for userfaultfd.
1298 // Disable for now. See b/270936884.
1299 return !gUseUserfaultfd;
1300 }
1301
CopyDexCache(ObjPtr<mirror::DexCache> cache)1302 uint32_t CopyDexCache(ObjPtr<mirror::DexCache> cache) REQUIRES_SHARED(Locks::mutator_lock_) {
1303 auto it = dex_caches_.find(cache->GetDexFile());
1304 if (it != dex_caches_.end()) {
1305 return it->second;
1306 }
1307 uint32_t offset = CopyObject(cache);
1308 dex_caches_.Put(cache->GetDexFile(), offset);
1309 // For dex caches, clear pointers to data that will be set at runtime.
1310 mirror::Object* copy = reinterpret_cast<mirror::Object*>(objects_.data() + offset);
1311 reinterpret_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
1312 reinterpret_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
1313
1314 if (!EmitDexCacheArrays()) {
1315 return offset;
1316 }
1317
1318 // Copy the ArtMethod array.
1319 mirror::NativeArray<ArtMethod>* resolved_methods = cache->GetResolvedMethodsArray();
1320 CopyNativeDexCacheArray(cache->GetDexFile()->NumMethodIds(),
1321 mirror::DexCache::kDexCacheMethodCacheSize,
1322 resolved_methods);
1323 // Store the array pointer in the dex cache, which will be relocated at the end.
1324 reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedMethodsArray(resolved_methods);
1325
1326 // Copy the ArtField array.
1327 mirror::NativeArray<ArtField>* resolved_fields = cache->GetResolvedFieldsArray();
1328 CopyNativeDexCacheArray(cache->GetDexFile()->NumFieldIds(),
1329 mirror::DexCache::kDexCacheFieldCacheSize,
1330 resolved_fields);
1331 // Store the array pointer in the dex cache, which will be relocated at the end.
1332 reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedFieldsArray(resolved_fields);
1333
1334 // Copy the type array.
1335 mirror::GcRootArray<mirror::Class>* resolved_types = cache->GetResolvedTypesArray();
1336 CreateGcRootDexCacheArray(cache->GetDexFile()->NumTypeIds(),
1337 mirror::DexCache::kDexCacheTypeCacheSize,
1338 resolved_types);
1339 // Store the array pointer in the dex cache, which will be relocated at the end.
1340 reinterpret_cast<mirror::DexCache*>(copy)->SetResolvedTypesArray(resolved_types);
1341
1342 // Copy the string array.
1343 mirror::GcRootArray<mirror::String>* strings = cache->GetStringsArray();
1344 // Note: `new_strings` points to temporary data, and is only valid here.
1345 mirror::GcRootArray<mirror::String>* new_strings =
1346 CreateGcRootDexCacheArray(cache->GetDexFile()->NumStringIds(),
1347 mirror::DexCache::kDexCacheStringCacheSize,
1348 strings);
1349 // Store the array pointer in the dex cache, which will be relocated at the end.
1350 reinterpret_cast<mirror::DexCache*>(copy)->SetStringsArray(strings);
1351
1352 // The code below copies new objects, so invalidate the address we have for
1353 // `copy`.
1354 copy = nullptr;
1355 if (strings != nullptr) {
1356 for (uint32_t i = 0; i < cache->GetDexFile()->NumStringIds(); ++i) {
1357 ObjPtr<mirror::String> str = strings->Get(i);
1358 if (str == nullptr || IsInBootImage(str.Ptr())) {
1359 new_strings->Set(i, str.Ptr());
1360 } else {
1361 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
1362 DCHECK_EQ(hash, static_cast<uint32_t>(str->ComputeHashCode()))
1363 << "Dex cache strings should be interned";
1364 auto it2 = intern_table_.FindWithHash(str.Ptr(), hash);
1365 if (it2 == intern_table_.end()) {
1366 uint32_t string_offset = CopyObject(str);
1367 uint32_t address = image_begin_ + string_offset + sizeof(ImageHeader);
1368 intern_table_.InsertWithHash(address, hash);
1369 new_strings->Set(i, reinterpret_cast<mirror::String*>(address));
1370 } else {
1371 new_strings->Set(i, reinterpret_cast<mirror::String*>(*it2));
1372 }
1373 // To not confuse string references from the dex cache object and
1374 // string references from the array, we put an offset bigger than the
1375 // size of a DexCache object. ClassLinker::VisitInternedStringReferences
1376 // knows how to decode this offset.
1377 string_reference_offsets_.emplace_back(
1378 sizeof(ImageHeader) + offset, sizeof(mirror::DexCache) + i);
1379 }
1380 }
1381 }
1382
1383 return offset;
1384 }
1385
IsInitialized(mirror::Class * cls)1386 bool IsInitialized(mirror::Class* cls) REQUIRES_SHARED(Locks::mutator_lock_) {
1387 if (IsInBootImage(cls)) {
1388 const OatDexFile* oat_dex_file = cls->GetDexFile().GetOatDexFile();
1389 DCHECK(oat_dex_file != nullptr) << "We should always have an .oat file for a boot image";
1390 uint16_t class_def_index = cls->GetDexClassDefIndex();
1391 ClassStatus oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus();
1392 return oat_file_class_status == ClassStatus::kVisiblyInitialized;
1393 } else {
1394 return cls->IsVisiblyInitialized<kVerifyNone>();
1395 }
1396 }
1397 // Try to initialize `copy`. Note that `cls` may not be initialized.
1398 // This is called after the image generation logic has visited super classes
1399 // and super interfaces, so we can just check those directly.
TryInitializeClass(mirror::Class * copy,ObjPtr<mirror::Class> cls,uint32_t class_offset)1400 bool TryInitializeClass(mirror::Class* copy, ObjPtr<mirror::Class> cls, uint32_t class_offset)
1401 REQUIRES_SHARED(Locks::mutator_lock_) {
1402 if (!cls->IsVerified()) {
1403 return false;
1404 }
1405 if (cls->IsArrayClass()) {
1406 return true;
1407 }
1408
1409 // Check if we have been able to initialize the super class.
1410 mirror::Class* super = GetClassContent(cls->GetSuperClass());
1411 DCHECK(super != nullptr)
1412 << "App image classes should always have a super class: " << cls->PrettyClass();
1413 if (!IsInitialized(super)) {
1414 return false;
1415 }
1416
1417 // We won't initialize class with class initializers.
1418 if (cls->FindClassInitializer(kRuntimePointerSize) != nullptr) {
1419 return false;
1420 }
1421
1422 // For non-interface classes, we require all implemented interfaces to be
1423 // initialized.
1424 if (!cls->IsInterface()) {
1425 for (size_t i = 0; i < cls->NumDirectInterfaces(); i++) {
1426 mirror::Class* itf = GetClassContent(cls->GetDirectInterface(i));
1427 if (!IsInitialized(itf)) {
1428 return false;
1429 }
1430 }
1431 }
1432
1433 // Trivial case: no static fields.
1434 if (cls->NumStaticFields() == 0u) {
1435 return true;
1436 }
1437
1438 // Go over all static fields and try to initialize them.
1439 EncodedStaticFieldValueIterator it(cls->GetDexFile(), *cls->GetClassDef());
1440 if (!it.HasNext()) {
1441 return true;
1442 }
1443
1444 // Temporary string offsets in case we failed to initialize the class. We
1445 // will add the offsets at the end of this method if we are successful.
1446 ArenaVector<AppImageReferenceOffsetInfo> string_offsets(allocator_.Adapter());
1447 ClassLinker* linker = Runtime::Current()->GetClassLinker();
1448 ClassAccessor accessor(cls->GetDexFile(), *cls->GetClassDef());
1449 for (const ClassAccessor::Field& field : accessor.GetStaticFields()) {
1450 if (!it.HasNext()) {
1451 break;
1452 }
1453 ArtField* art_field = linker->LookupResolvedField(field.GetIndex(),
1454 cls->GetDexCache(),
1455 cls->GetClassLoader(),
1456 /* is_static= */ true);
1457 DCHECK_NE(art_field, nullptr);
1458 MemberOffset offset(art_field->GetOffset());
1459 switch (it.GetValueType()) {
1460 case EncodedArrayValueIterator::ValueType::kBoolean:
1461 copy->SetFieldBoolean<false>(offset, it.GetJavaValue().z);
1462 break;
1463 case EncodedArrayValueIterator::ValueType::kByte:
1464 copy->SetFieldByte<false>(offset, it.GetJavaValue().b);
1465 break;
1466 case EncodedArrayValueIterator::ValueType::kShort:
1467 copy->SetFieldShort<false>(offset, it.GetJavaValue().s);
1468 break;
1469 case EncodedArrayValueIterator::ValueType::kChar:
1470 copy->SetFieldChar<false>(offset, it.GetJavaValue().c);
1471 break;
1472 case EncodedArrayValueIterator::ValueType::kInt:
1473 copy->SetField32<false>(offset, it.GetJavaValue().i);
1474 break;
1475 case EncodedArrayValueIterator::ValueType::kLong:
1476 copy->SetField64<false>(offset, it.GetJavaValue().j);
1477 break;
1478 case EncodedArrayValueIterator::ValueType::kFloat:
1479 copy->SetField32<false>(offset, it.GetJavaValue().i);
1480 break;
1481 case EncodedArrayValueIterator::ValueType::kDouble:
1482 copy->SetField64<false>(offset, it.GetJavaValue().j);
1483 break;
1484 case EncodedArrayValueIterator::ValueType::kNull:
1485 copy->SetFieldObject<false>(offset, nullptr);
1486 break;
1487 case EncodedArrayValueIterator::ValueType::kString: {
1488 ObjPtr<mirror::String> str =
1489 linker->LookupString(dex::StringIndex(it.GetJavaValue().i), cls->GetDexCache());
1490 mirror::String* str_copy = nullptr;
1491 if (str == nullptr) {
1492 // String wasn't created yet.
1493 return false;
1494 } else if (IsInBootImage(str.Ptr())) {
1495 str_copy = str.Ptr();
1496 } else {
1497 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
1498 DCHECK_EQ(hash, static_cast<uint32_t>(str->ComputeHashCode()))
1499 << "Dex cache strings should be interned";
1500 auto string_it = intern_table_.FindWithHash(str.Ptr(), hash);
1501 if (string_it == intern_table_.end()) {
1502 // The string must be interned.
1503 uint32_t string_offset = CopyObject(str);
1504 // Reload the class copy after having copied the string.
1505 copy = reinterpret_cast<mirror::Class*>(objects_.data() + class_offset);
1506 uint32_t address = image_begin_ + string_offset + sizeof(ImageHeader);
1507 intern_table_.InsertWithHash(address, hash);
1508 str_copy = reinterpret_cast<mirror::String*>(address);
1509 } else {
1510 str_copy = reinterpret_cast<mirror::String*>(*string_it);
1511 }
1512 string_offsets.emplace_back(sizeof(ImageHeader) + class_offset, offset.Int32Value());
1513 }
1514 uint8_t* raw_addr = reinterpret_cast<uint8_t*>(copy) + offset.Int32Value();
1515 mirror::HeapReference<mirror::Object>* objref_addr =
1516 reinterpret_cast<mirror::HeapReference<mirror::Object>*>(raw_addr);
1517 objref_addr->Assign</* kIsVolatile= */ false>(str_copy);
1518 break;
1519 }
1520 case EncodedArrayValueIterator::ValueType::kType: {
1521 // Note that it may be that the referenced type hasn't been processed
1522 // yet by the image generation logic. In this case we bail out for
1523 // simplicity.
1524 ObjPtr<mirror::Class> type =
1525 linker->LookupResolvedType(dex::TypeIndex(it.GetJavaValue().i), cls);
1526 mirror::Class* type_copy = nullptr;
1527 if (type == nullptr) {
1528 // Class wasn't resolved yet.
1529 return false;
1530 } else if (IsInBootImage(type.Ptr())) {
1531 // Make sure the type is in our class table.
1532 uint32_t hash = type->DescriptorHash();
1533 class_table_.InsertWithHash(ClassTable::TableSlot(type.Ptr(), hash), hash);
1534 type_copy = type.Ptr();
1535 } else if (type->IsArrayClass()) {
1536 std::string class_name;
1537 type->GetDescriptor(&class_name);
1538 auto class_it = array_classes_.find(class_name);
1539 if (class_it == array_classes_.end()) {
1540 return false;
1541 }
1542 type_copy = reinterpret_cast<mirror::Class*>(
1543 image_begin_ + sizeof(ImageHeader) + class_it->second);
1544 } else {
1545 const dex::ClassDef* class_def = type->GetClassDef();
1546 DCHECK_NE(class_def, nullptr);
1547 auto class_it = classes_.find(class_def);
1548 if (class_it == classes_.end()) {
1549 return false;
1550 }
1551 type_copy = reinterpret_cast<mirror::Class*>(
1552 image_begin_ + sizeof(ImageHeader) + class_it->second);
1553 }
1554 uint8_t* raw_addr = reinterpret_cast<uint8_t*>(copy) + offset.Int32Value();
1555 mirror::HeapReference<mirror::Object>* objref_addr =
1556 reinterpret_cast<mirror::HeapReference<mirror::Object>*>(raw_addr);
1557 objref_addr->Assign</* kIsVolatile= */ false>(type_copy);
1558 break;
1559 }
1560 default:
1561 LOG(FATAL) << "Unreachable";
1562 }
1563 it.Next();
1564 }
1565 // We have successfully initialized the class, we can now record the string
1566 // offsets.
1567 string_reference_offsets_.insert(
1568 string_reference_offsets_.end(), string_offsets.begin(), string_offsets.end());
1569 return true;
1570 }
1571
CopyClass(ObjPtr<mirror::Class> cls)1572 uint32_t CopyClass(ObjPtr<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) {
1573 DCHECK(!cls->IsBootStrapClassLoaded());
1574 uint32_t offset = 0u;
1575 if (cls->IsArrayClass()) {
1576 std::string class_name;
1577 cls->GetDescriptor(&class_name);
1578 auto it = array_classes_.find(class_name);
1579 if (it != array_classes_.end()) {
1580 return it->second;
1581 }
1582 offset = CopyObject(cls);
1583 array_classes_.Put(class_name, offset);
1584 } else {
1585 const dex::ClassDef* class_def = cls->GetClassDef();
1586 auto it = classes_.find(class_def);
1587 if (it != classes_.end()) {
1588 return it->second;
1589 }
1590 offset = CopyObject(cls);
1591 classes_.Put(class_def, offset);
1592 }
1593
1594 uint32_t hash = cls->DescriptorHash();
1595 // Save the hash, the `HashSet` implementation requires to find it.
1596 class_hashes_.Put(offset, hash);
1597 uint32_t class_image_address = image_begin_ + sizeof(ImageHeader) + offset;
1598 bool inserted =
1599 class_table_.InsertWithHash(ClassTable::TableSlot(class_image_address, hash), hash).second;
1600 DCHECK(inserted) << "Class " << cls->PrettyDescriptor()
1601 << " (" << cls.Ptr() << ") already inserted";
1602
1603 // Clear internal state.
1604 mirror::Class* copy = reinterpret_cast<mirror::Class*>(objects_.data() + offset);
1605 copy->SetClinitThreadId(static_cast<pid_t>(0u));
1606 if (cls->IsArrayClass()) {
1607 DCHECK(copy->IsVisiblyInitialized());
1608 } else {
1609 copy->SetStatusInternal(cls->IsVerified() ? ClassStatus::kVerified : ClassStatus::kResolved);
1610 }
1611
1612 // Clear static field values.
1613 auto clear_class = [&] () REQUIRES_SHARED(Locks::mutator_lock_) {
1614 MemberOffset static_offset = cls->GetFirstReferenceStaticFieldOffset(kRuntimePointerSize);
1615 memset(objects_.data() + offset + static_offset.Uint32Value(),
1616 0,
1617 cls->GetClassSize() - static_offset.Uint32Value());
1618 };
1619 clear_class();
1620
1621 bool is_class_initialized = TryInitializeClass(copy, cls, offset);
1622 // Reload the copy, it may have moved after `TryInitializeClass`.
1623 copy = reinterpret_cast<mirror::Class*>(objects_.data() + offset);
1624 if (is_class_initialized) {
1625 copy->SetStatusInternal(ClassStatus::kVisiblyInitialized);
1626 if (!cls->IsArrayClass() && !cls->IsFinalizable()) {
1627 copy->SetObjectSizeAllocFastPath(RoundUp(cls->GetObjectSize(), kObjectAlignment));
1628 }
1629 if (cls->IsInterface()) {
1630 copy->SetAccessFlags(copy->GetAccessFlags() | kAccRecursivelyInitialized);
1631 }
1632 } else {
1633 // If we fail to initialize, remove initialization related flags and
1634 // clear again.
1635 copy->SetObjectSizeAllocFastPath(std::numeric_limits<uint32_t>::max());
1636 copy->SetAccessFlags(copy->GetAccessFlags() & ~kAccRecursivelyInitialized);
1637 clear_class();
1638 }
1639
1640 CopyFieldArrays(cls, class_image_address);
1641 CopyMethodArrays(cls, class_image_address, is_class_initialized);
1642 if (cls->ShouldHaveImt()) {
1643 CopyImTable(cls);
1644 }
1645
1646 return offset;
1647 }
1648
1649 // Copy `obj` in `objects_` and relocate references. Returns the offset
1650 // within our buffer.
CopyObject(ObjPtr<mirror::Object> obj)1651 uint32_t CopyObject(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1652 // Copy the object in `objects_`.
1653 size_t object_size = obj->SizeOf();
1654 size_t offset = objects_.size();
1655 DCHECK(IsAligned<kObjectAlignment>(offset));
1656 object_offsets_.push_back(offset);
1657 objects_.resize(RoundUp(offset + object_size, kObjectAlignment));
1658
1659 mirror::Object* copy = reinterpret_cast<mirror::Object*>(objects_.data() + offset);
1660 mirror::Object::CopyRawObjectData(
1661 reinterpret_cast<uint8_t*>(copy), obj, object_size - sizeof(mirror::Object));
1662 // Clear any lockword data.
1663 copy->SetLockWord(LockWord::Default(), /* as_volatile= */ false);
1664 copy->SetClass(obj->GetClass());
1665
1666 // Fixup reference pointers.
1667 FixupVisitor visitor(this, offset);
1668 obj->VisitReferences</*kVisitNativeRoots=*/ false>(visitor, visitor);
1669
1670 if (obj->IsString()) {
1671 // Ensure a string always has a hashcode stored. This is checked at
1672 // runtime because boot images don't want strings dirtied due to hashcode.
1673 reinterpret_cast<mirror::String*>(copy)->GetHashCode();
1674 }
1675
1676 object_section_size_ += RoundUp(object_size, kObjectAlignment);
1677 return offset;
1678 }
1679
1680 class CollectDexCacheVisitor : public DexCacheVisitor {
1681 public:
CollectDexCacheVisitor(VariableSizedHandleScope & handles)1682 explicit CollectDexCacheVisitor(VariableSizedHandleScope& handles) : handles_(handles) {}
1683
Visit(ObjPtr<mirror::DexCache> dex_cache)1684 void Visit(ObjPtr<mirror::DexCache> dex_cache)
1685 REQUIRES_SHARED(Locks::dex_lock_, Locks::mutator_lock_) override {
1686 dex_caches_.push_back(handles_.NewHandle(dex_cache));
1687 }
GetDexCaches() const1688 const std::vector<Handle<mirror::DexCache>>& GetDexCaches() const {
1689 return dex_caches_;
1690 }
1691 private:
1692 VariableSizedHandleScope& handles_;
1693 std::vector<Handle<mirror::DexCache>> dex_caches_;
1694 };
1695
1696 // Find dex caches corresponding to the primary APK.
FindDexCaches(Thread * self,dchecked_vector<Handle<mirror::DexCache>> & dex_caches,VariableSizedHandleScope & handles)1697 void FindDexCaches(Thread* self,
1698 dchecked_vector<Handle<mirror::DexCache>>& dex_caches,
1699 VariableSizedHandleScope& handles)
1700 REQUIRES_SHARED(Locks::mutator_lock_) {
1701 ScopedTrace trace("Find dex caches");
1702 DCHECK(dex_caches.empty());
1703 // Collect all dex caches.
1704 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1705 CollectDexCacheVisitor visitor(handles);
1706 {
1707 ReaderMutexLock mu(self, *Locks::dex_lock_);
1708 class_linker->VisitDexCaches(&visitor);
1709 }
1710
1711 // Find the primary APK.
1712 AppInfo* app_info = Runtime::Current()->GetAppInfo();
1713 for (Handle<mirror::DexCache> cache : visitor.GetDexCaches()) {
1714 if (app_info->GetRegisteredCodeType(cache->GetDexFile()->GetLocation()) ==
1715 AppInfo::CodeType::kPrimaryApk) {
1716 dex_caches.push_back(handles.NewHandle(cache.Get()));
1717 break;
1718 }
1719 }
1720
1721 if (dex_caches.empty()) {
1722 return;
1723 }
1724
1725 const OatDexFile* oat_dex_file = dex_caches[0]->GetDexFile()->GetOatDexFile();
1726 if (oat_dex_file == nullptr) {
1727 // We need a .oat file for loading an app image;
1728 dex_caches.clear();
1729 return;
1730 }
1731
1732 // Store the dex caches in the order in which their corresponding dex files
1733 // are stored in the oat file. When we check for checksums at the point of
1734 // loading the image, we rely on this order.
1735 for (const OatDexFile* current : oat_dex_file->GetOatFile()->GetOatDexFiles()) {
1736 if (current != oat_dex_file) {
1737 for (Handle<mirror::DexCache> cache : visitor.GetDexCaches()) {
1738 if (cache->GetDexFile()->GetOatDexFile() == current) {
1739 dex_caches.push_back(handles.NewHandle(cache.Get()));
1740 }
1741 }
1742 }
1743 }
1744 }
1745
PointerToUint64(void * ptr)1746 static uint64_t PointerToUint64(void* ptr) {
1747 return reinterpret_cast64<uint64_t>(ptr);
1748 }
1749
WriteImageMethods()1750 void WriteImageMethods() {
1751 ScopedObjectAccess soa(Thread::Current());
1752 // We can just use plain runtime pointers.
1753 Runtime* runtime = Runtime::Current();
1754 header_.image_methods_[ImageHeader::kResolutionMethod] =
1755 PointerToUint64(runtime->GetResolutionMethod());
1756 header_.image_methods_[ImageHeader::kImtConflictMethod] =
1757 PointerToUint64(runtime->GetImtConflictMethod());
1758 header_.image_methods_[ImageHeader::kImtUnimplementedMethod] =
1759 PointerToUint64(runtime->GetImtUnimplementedMethod());
1760 header_.image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
1761 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves));
1762 header_.image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
1763 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly));
1764 header_.image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
1765 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
1766 header_.image_methods_[ImageHeader::kSaveEverythingMethod] =
1767 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything));
1768 header_.image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
1769 PointerToUint64(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit));
1770 header_.image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
1771 PointerToUint64(
1772 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck));
1773 }
1774
1775 // Header for the image, created at the end once we know the size of all
1776 // sections.
1777 ImageHeader header_;
1778
1779 // Allocator for the various data structures to allocate while generating the
1780 // image.
1781 ArenaAllocator allocator_;
1782
1783 // Contents of the various sections.
1784 ArenaVector<uint8_t> objects_;
1785 ArenaVector<uint8_t> art_fields_;
1786 ArenaVector<uint8_t> art_methods_;
1787 ArenaVector<uint8_t> im_tables_;
1788 ArenaVector<uint8_t> metadata_;
1789 ArenaVector<uint8_t> dex_cache_arrays_;
1790
1791 ArenaVector<AppImageReferenceOffsetInfo> string_reference_offsets_;
1792
1793 // Bitmap of live objects in `objects_`. Populated from `object_offsets_`
1794 // once we know `object_section_size`.
1795 gc::accounting::ContinuousSpaceBitmap image_bitmap_;
1796
1797 // Sections stored in the header.
1798 ArenaVector<ImageSection> sections_;
1799
1800 // A list of offsets in `objects_` where objects begin.
1801 ArenaVector<uint32_t> object_offsets_;
1802
1803 ArenaSafeMap<const dex::ClassDef*, uint32_t> classes_;
1804 ArenaSafeMap<std::string, uint32_t> array_classes_;
1805 ArenaSafeMap<const DexFile*, uint32_t> dex_caches_;
1806 ArenaSafeMap<uint32_t, uint32_t> class_hashes_;
1807
1808 ArenaSafeMap<void*, std::pair<NativeRelocationKind, uint32_t>> native_relocations_;
1809
1810 // Cached values of boot image information.
1811 const uint32_t boot_image_begin_;
1812 const uint32_t boot_image_size_;
1813
1814 // Where the image begins: just after the boot image.
1815 const uint32_t image_begin_;
1816
1817 // Size of the `kSectionObjects` section.
1818 size_t object_section_size_;
1819
1820 // The location of the primary APK / dex file.
1821 std::string dex_location_;
1822
1823 // The intern table for strings that we will write to disk.
1824 InternTableSet intern_table_;
1825
1826 // The class table holding classes that we will write to disk.
1827 ClassTableSet class_table_;
1828
1829 friend class ClassDescriptorHash;
1830 friend class PruneVisitor;
1831 friend class NativePointerVisitor;
1832 };
1833
GetRuntimeImageDir(const std::string & app_data_dir)1834 std::string RuntimeImage::GetRuntimeImageDir(const std::string& app_data_dir) {
1835 if (app_data_dir.empty()) {
1836 // The data directory is empty for tests.
1837 return "";
1838 }
1839 return app_data_dir + "/cache/oat_primary/";
1840 }
1841
1842 // Note: this may return a relative path for tests.
GetRuntimeImagePath(const std::string & app_data_dir,const std::string & dex_location,const std::string & isa)1843 std::string RuntimeImage::GetRuntimeImagePath(const std::string& app_data_dir,
1844 const std::string& dex_location,
1845 const std::string& isa) {
1846 std::string basename = android::base::Basename(dex_location);
1847 std::string filename = ReplaceFileExtension(basename, "art");
1848
1849 return GetRuntimeImageDir(app_data_dir) + isa + "/" + filename;
1850 }
1851
GetRuntimeImagePath(const std::string & dex_location)1852 std::string RuntimeImage::GetRuntimeImagePath(const std::string& dex_location) {
1853 return GetRuntimeImagePath(Runtime::Current()->GetProcessDataDirectory(),
1854 dex_location,
1855 GetInstructionSetString(kRuntimeISA));
1856 }
1857
EnsureDirectoryExists(const std::string & directory,std::string * error_msg)1858 static bool EnsureDirectoryExists(const std::string& directory, std::string* error_msg) {
1859 if (!OS::DirectoryExists(directory.c_str())) {
1860 static constexpr mode_t kDirectoryMode = S_IRWXU | S_IRGRP | S_IXGRP| S_IROTH | S_IXOTH;
1861 if (mkdir(directory.c_str(), kDirectoryMode) != 0) {
1862 *error_msg =
1863 StringPrintf("Could not create directory %s: %s", directory.c_str(), strerror(errno));
1864 return false;
1865 }
1866 }
1867 return true;
1868 }
1869
WriteImageToDisk(std::string * error_msg)1870 bool RuntimeImage::WriteImageToDisk(std::string* error_msg) {
1871 gc::Heap* heap = Runtime::Current()->GetHeap();
1872 if (!heap->HasBootImageSpace()) {
1873 *error_msg = "Cannot generate an app image without a boot image";
1874 return false;
1875 }
1876 std::string oat_path = GetRuntimeImageDir(Runtime::Current()->GetProcessDataDirectory());
1877 if (!oat_path.empty() && !EnsureDirectoryExists(oat_path, error_msg)) {
1878 return false;
1879 }
1880
1881 ScopedTrace generate_image_trace("Generating runtime image");
1882 std::unique_ptr<RuntimeImageHelper> image(new RuntimeImageHelper(heap));
1883 if (!image->Generate(error_msg)) {
1884 return false;
1885 }
1886
1887 ScopedTrace write_image_trace("Writing runtime image to disk");
1888
1889 const std::string path = GetRuntimeImagePath(image->GetDexLocation());
1890 if (!EnsureDirectoryExists(android::base::Dirname(path), error_msg)) {
1891 return false;
1892 }
1893
1894 // We first generate the app image in a temporary file, which we will then
1895 // move to `path`.
1896 const std::string temp_path = ReplaceFileExtension(path, std::to_string(getpid()) + ".tmp");
1897 ImageFileGuard image_file;
1898 image_file.reset(OS::CreateEmptyFileWriteOnly(temp_path.c_str()));
1899
1900 if (image_file == nullptr) {
1901 *error_msg = "Could not open " + temp_path + " for writing";
1902 return false;
1903 }
1904
1905 std::vector<uint8_t> full_data(image->GetHeader()->GetImageSize());
1906 image->FillData(full_data);
1907
1908 // Specify default block size of 512K to enable parallel image decompression.
1909 static constexpr size_t kMaxImageBlockSize = 524288;
1910 // Use LZ4 as good compromise between CPU time and compression. LZ4HC
1911 // empirically takes 10x more time compressing.
1912 static constexpr ImageHeader::StorageMode kImageStorageMode = ImageHeader::kStorageModeLZ4;
1913 // Note: no need to update the checksum of the runtime app image: we have no
1914 // use for it, and computing it takes CPU time.
1915 if (!image->GetHeader()->WriteData(
1916 image_file,
1917 full_data.data(),
1918 reinterpret_cast<const uint8_t*>(image->GetImageBitmap().Begin()),
1919 kImageStorageMode,
1920 kMaxImageBlockSize,
1921 /* update_checksum= */ false,
1922 error_msg)) {
1923 return false;
1924 }
1925
1926 if (!image_file.WriteHeaderAndClose(temp_path, image->GetHeader(), error_msg)) {
1927 return false;
1928 }
1929
1930 if (rename(temp_path.c_str(), path.c_str()) != 0) {
1931 *error_msg =
1932 "Failed to move runtime app image to " + path + ": " + std::string(strerror(errno));
1933 // Unlink directly: we cannot use `out` as we have closed it.
1934 unlink(temp_path.c_str());
1935 return false;
1936 }
1937
1938 return true;
1939 }
1940
1941 } // namespace art
1942