1 /*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifer being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 * don't alias, otherwise two drivers might support the same format but use
78 * different aliases, preventing them from sharing buffers in an efficient
79 * format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 * see modifiers as opaque tokens they can check for equality and intersect.
82 * These users musn't need to know to reason about the modifier value
83 * (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 */
92
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID 0
100
101 /* color index */
102 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106
107 /* 16 bpp Red */
108 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
109
110 /* 16 bpp RG */
111 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
112 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
113
114 /* 32 bpp RG */
115 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
116 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
117
118 /* 8 bpp RGB */
119 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
120 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
121
122 /* 16 bpp RGB */
123 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
124 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
125 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
126 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
127
128 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
132
133 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
134 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
135 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
136 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
137
138 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
142
143 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
144 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
145
146 /* 24 bpp RGB */
147 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
148 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
149
150 /* 32 bpp RGB */
151 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
152 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
153 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
154 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
155
156 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
160
161 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
162 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
163 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
164 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
165
166 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
170
171 /* 64 bpp RGB */
172 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
173 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
174
175 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
176 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
177
178 /*
179 * Floating point 64bpp RGB
180 * IEEE 754-2008 binary16 half-precision float
181 * [15:0] sign:exponent:mantissa 1:5:10
182 */
183 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
184 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
185
186 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
187 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
188
189 /*
190 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
191 * of unused padding per component:
192 */
193 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
194
195 /* packed YCbCr */
196 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
197 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
198 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
199 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
200
201 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
202 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
203 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
204 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
205
206 /*
207 * packed Y2xx indicate for each component, xx valid data occupy msb
208 * 16-xx padding occupy lsb
209 */
210 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
211 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
212 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
213
214 /*
215 * packed Y4xx indicate for each component, xx valid data occupy msb
216 * 16-xx padding occupy lsb except Y410
217 */
218 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
219 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
220 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
221
222 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
223 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
224 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
225
226 /*
227 * packed YCbCr420 2x2 tiled formats
228 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
229 */
230 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
231 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
232 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
233 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
234
235 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
236 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
237 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
238 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
239
240 /*
241 * 1-plane YUV 4:2:0
242 * In these formats, the component ordering is specified (Y, followed by U
243 * then V), but the exact Linear layout is undefined.
244 * These formats can only be used with a non-Linear modifier.
245 */
246 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
247 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
248
249 /*
250 * 2 plane RGB + A
251 * index 0 = RGB plane, same format as the corresponding non _A8 format has
252 * index 1 = A plane, [7:0] A
253 */
254 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
255 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
256 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
257 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
258 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
259 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
260 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
261 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
262
263 /*
264 * 2 plane YCbCr
265 * index 0 = Y plane, [7:0] Y
266 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
267 * or
268 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
269 */
270 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
271 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
272 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
273 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
274 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
275 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
276 /*
277 * 2 plane YCbCr
278 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
279 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
280 */
281 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
282
283 /*
284 * 2 plane YCbCr MSB aligned
285 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
286 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
287 */
288 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
289
290 /*
291 * 2 plane YCbCr MSB aligned
292 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
293 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
294 */
295 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
296
297 /*
298 * 2 plane YCbCr MSB aligned
299 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
300 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
301 */
302 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
303
304 /*
305 * 2 plane YCbCr MSB aligned
306 * index 0 = Y plane, [15:0] Y little endian
307 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
308 */
309 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
310
311 /* 2 plane YCbCr420.
312 * 3 10 bit components and 2 padding bits packed into 4 bytes.
313 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
314 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
315 */
316 #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
317
318 /* 3 plane non-subsampled (444) YCbCr
319 * 16 bits per component, but only 10 bits are used and 6 bits are padded
320 * index 0: Y plane, [15:0] Y:x [10:6] little endian
321 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
322 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
323 */
324 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
325
326 /* 3 plane non-subsampled (444) YCrCb
327 * 16 bits per component, but only 10 bits are used and 6 bits are padded
328 * index 0: Y plane, [15:0] Y:x [10:6] little endian
329 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
330 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
331 */
332 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
333
334 /*
335 * 3 plane YCbCr
336 * index 0: Y plane, [7:0] Y
337 * index 1: Cb plane, [7:0] Cb
338 * index 2: Cr plane, [7:0] Cr
339 * or
340 * index 1: Cr plane, [7:0] Cr
341 * index 2: Cb plane, [7:0] Cb
342 */
343 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
344 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
345 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
346 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
347 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
348 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
349 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
350 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
351 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
352 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
353
354
355 /*
356 * Format Modifiers:
357 *
358 * Format modifiers describe, typically, a re-ordering or modification
359 * of the data in a plane of an FB. This can be used to express tiled/
360 * swizzled formats, or compression, or a combination of the two.
361 *
362 * The upper 8 bits of the format modifier are a vendor-id as assigned
363 * below. The lower 56 bits are assigned as vendor sees fit.
364 */
365
366 /* Vendor Ids: */
367 #define DRM_FORMAT_MOD_VENDOR_NONE 0
368 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
369 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
370 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
371 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
372 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
373 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
374 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
375 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
376 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
377 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
378
379 /* add more to the end as needed */
380
381 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
382
383 #define fourcc_mod_code(vendor, val) \
384 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
385
386 /*
387 * Format Modifier tokens:
388 *
389 * When adding a new token please document the layout with a code comment,
390 * similar to the fourcc codes above. drm_fourcc.h is considered the
391 * authoritative source for all of these.
392 *
393 * Generic modifier names:
394 *
395 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
396 * for layouts which are common across multiple vendors. To preserve
397 * compatibility, in cases where a vendor-specific definition already exists and
398 * a generic name for it is desired, the common name is a purely symbolic alias
399 * and must use the same numerical value as the original definition.
400 *
401 * Note that generic names should only be used for modifiers which describe
402 * generic layouts (such as pixel re-ordering), which may have
403 * independently-developed support across multiple vendors.
404 *
405 * In future cases where a generic layout is identified before merging with a
406 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
407 * 'NONE' could be considered. This should only be for obvious, exceptional
408 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
409 * apply to a single vendor.
410 *
411 * Generic names should not be used for cases where multiple hardware vendors
412 * have implementations of the same standardised compression scheme (such as
413 * AFBC). In those cases, all implementations should use the same format
414 * modifier(s), reflecting the vendor of the standard.
415 */
416
417 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
418
419 /*
420 * Invalid Modifier
421 *
422 * This modifier can be used as a sentinel to terminate the format modifiers
423 * list, or to initialize a variable with an invalid modifier. It might also be
424 * used to report an error back to userspace for certain APIs.
425 */
426 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
427
428 /*
429 * Linear Layout
430 *
431 * Just plain linear layout. Note that this is different from no specifying any
432 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
433 * which tells the driver to also take driver-internal information into account
434 * and so might actually result in a tiled framebuffer.
435 */
436 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
437
438 /*
439 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
440 *
441 * The "none" format modifier doesn't actually mean that the modifier is
442 * implicit, instead it means that the layout is linear. Whether modifiers are
443 * used is out-of-band information carried in an API-specific way (e.g. in a
444 * flag for drm_mode_fb_cmd2).
445 */
446 #define DRM_FORMAT_MOD_NONE 0
447
448 /* Intel framebuffer modifiers */
449
450 /*
451 * Intel X-tiling layout
452 *
453 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
454 * in row-major layout. Within the tile bytes are laid out row-major, with
455 * a platform-dependent stride. On top of that the memory can apply
456 * platform-depending swizzling of some higher address bits into bit6.
457 *
458 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
459 * On earlier platforms the is highly platforms specific and not useful for
460 * cross-driver sharing. It exists since on a given platform it does uniquely
461 * identify the layout in a simple way for i915-specific userspace, which
462 * facilitated conversion of userspace to modifiers. Additionally the exact
463 * format on some really old platforms is not known.
464 */
465 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
466
467 /*
468 * Intel Y-tiling layout
469 *
470 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
471 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
472 * chunks column-major, with a platform-dependent height. On top of that the
473 * memory can apply platform-depending swizzling of some higher address bits
474 * into bit6.
475 *
476 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
477 * On earlier platforms the is highly platforms specific and not useful for
478 * cross-driver sharing. It exists since on a given platform it does uniquely
479 * identify the layout in a simple way for i915-specific userspace, which
480 * facilitated conversion of userspace to modifiers. Additionally the exact
481 * format on some really old platforms is not known.
482 */
483 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
484
485 /*
486 * Intel Yf-tiling layout
487 *
488 * This is a tiled layout using 4Kb tiles in row-major layout.
489 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
490 * are arranged in four groups (two wide, two high) with column-major layout.
491 * Each group therefore consits out of four 256 byte units, which are also laid
492 * out as 2x2 column-major.
493 * 256 byte units are made out of four 64 byte blocks of pixels, producing
494 * either a square block or a 2:1 unit.
495 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
496 * in pixel depends on the pixel depth.
497 */
498 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
499
500 /*
501 * Intel color control surface (CCS) for render compression
502 *
503 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
504 * The main surface will be plane index 0 and must be Y/Yf-tiled,
505 * the CCS will be plane index 1.
506 *
507 * Each CCS tile matches a 1024x512 pixel area of the main surface.
508 * To match certain aspects of the 3D hardware the CCS is
509 * considered to be made up of normal 128Bx32 Y tiles, Thus
510 * the CCS pitch must be specified in multiples of 128 bytes.
511 *
512 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
513 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
514 * But that fact is not relevant unless the memory is accessed
515 * directly.
516 */
517 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
518 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
519
520 /*
521 * Intel color control surfaces (CCS) for Gen-12 render compression.
522 *
523 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
524 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
525 * main surface. In other words, 4 bits in CCS map to a main surface cache
526 * line pair. The main surface pitch is required to be a multiple of four
527 * Y-tile widths.
528 */
529 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
530
531 /*
532 * Intel color control surfaces (CCS) for Gen-12 media compression
533 *
534 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
535 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
536 * main surface. In other words, 4 bits in CCS map to a main surface cache
537 * line pair. The main surface pitch is required to be a multiple of four
538 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
539 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
540 * planes 2 and 3 for the respective CCS.
541 */
542 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
543
544 /*
545 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
546 * compression.
547 *
548 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
549 * and at index 1. The clear color is stored at index 2, and the pitch should
550 * be ignored. The clear color structure is 256 bits. The first 128 bits
551 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
552 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
553 * the converted clear color of size 64 bits. The first 32 bits store the Lower
554 * Converted Clear Color value and the next 32 bits store the Higher Converted
555 * Clear Color value when applicable. The Converted Clear Color values are
556 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
557 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
558 * corresponds to an area of 4x1 tiles in the main surface. The main surface
559 * pitch is required to be a multiple of 4 tile widths.
560 */
561 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
562
563 /*
564 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
565 *
566 * Macroblocks are laid in a Z-shape, and each pixel data is following the
567 * standard NV12 style.
568 * As for NV12, an image is the result of two frame buffers: one for Y,
569 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
570 * Alignment requirements are (for each buffer):
571 * - multiple of 128 pixels for the width
572 * - multiple of 32 pixels for the height
573 *
574 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
575 */
576 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
577
578 /*
579 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
580 *
581 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
582 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
583 * they correspond to their 16x16 luma block.
584 */
585 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
586
587 /*
588 * Qualcomm Compressed Format
589 *
590 * Refers to a compressed variant of the base format that is compressed.
591 * Implementation may be platform and base-format specific.
592 *
593 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
594 * Pixel data pitch/stride is aligned with macrotile width.
595 * Pixel data height is aligned with macrotile height.
596 * Entire pixel data buffer is aligned with 4k(bytes).
597 */
598 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
599
600 /* Vivante framebuffer modifiers */
601
602 /*
603 * Vivante 4x4 tiling layout
604 *
605 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
606 * layout.
607 */
608 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
609
610 /*
611 * Vivante 64x64 super-tiling layout
612 *
613 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
614 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
615 * major layout.
616 *
617 * For more information: see
618 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
619 */
620 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
621
622 /*
623 * Vivante 4x4 tiling layout for dual-pipe
624 *
625 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
626 * different base address. Offsets from the base addresses are therefore halved
627 * compared to the non-split tiled layout.
628 */
629 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
630
631 /*
632 * Vivante 64x64 super-tiling layout for dual-pipe
633 *
634 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
635 * starts at a different base address. Offsets from the base addresses are
636 * therefore halved compared to the non-split super-tiled layout.
637 */
638 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
639
640 /* NVIDIA frame buffer modifiers */
641
642 /*
643 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
644 *
645 * Pixels are arranged in simple tiles of 16 x 16 bytes.
646 */
647 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
648
649 /*
650 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
651 * and Tegra GPUs starting with Tegra K1.
652 *
653 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
654 * based on the architecture generation. GOBs themselves are then arranged in
655 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
656 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
657 * a block depth or height of "4").
658 *
659 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
660 * in full detail.
661 *
662 * Macro
663 * Bits Param Description
664 * ---- ----- -----------------------------------------------------------------
665 *
666 * 3:0 h log2(height) of each block, in GOBs. Placed here for
667 * compatibility with the existing
668 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
669 *
670 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
671 * compatibility with the existing
672 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
673 *
674 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
675 * size). Must be zero.
676 *
677 * Note there is no log2(width) parameter. Some portions of the
678 * hardware support a block width of two gobs, but it is impractical
679 * to use due to lack of support elsewhere, and has no known
680 * benefits.
681 *
682 * 11:9 - Reserved (To support 2D-array textures with variable array stride
683 * in blocks, specified via log2(tile width in blocks)). Must be
684 * zero.
685 *
686 * 19:12 k Page Kind. This value directly maps to a field in the page
687 * tables of all GPUs >= NV50. It affects the exact layout of bits
688 * in memory and can be derived from the tuple
689 *
690 * (format, GPU model, compression type, samples per pixel)
691 *
692 * Where compression type is defined below. If GPU model were
693 * implied by the format modifier, format, or memory buffer, page
694 * kind would not need to be included in the modifier itself, but
695 * since the modifier should define the layout of the associated
696 * memory buffer independent from any device or other context, it
697 * must be included here.
698 *
699 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
700 * starting with Fermi GPUs. Additionally, the mapping between page
701 * kind and bit layout has changed at various points.
702 *
703 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
704 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
705 * 2 = Gob Height 8, Turing+ Page Kind mapping
706 * 3 = Reserved for future use.
707 *
708 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
709 * bit remapping step that occurs at an even lower level than the
710 * page kind and block linear swizzles. This causes the layout of
711 * surfaces mapped in those SOC's GPUs to be incompatible with the
712 * equivalent mapping on other GPUs in the same system.
713 *
714 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
715 * 1 = Desktop GPU and Tegra Xavier+ Layout
716 *
717 * 25:23 c Lossless Framebuffer Compression type.
718 *
719 * 0 = none
720 * 1 = ROP/3D, layout 1, exact compression format implied by Page
721 * Kind field
722 * 2 = ROP/3D, layout 2, exact compression format implied by Page
723 * Kind field
724 * 3 = CDE horizontal
725 * 4 = CDE vertical
726 * 5 = Reserved for future use
727 * 6 = Reserved for future use
728 * 7 = Reserved for future use
729 *
730 * 55:25 - Reserved for future use. Must be zero.
731 */
732 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
733 fourcc_mod_code(NVIDIA, (0x10 | \
734 ((h) & 0xf) | \
735 (((k) & 0xff) << 12) | \
736 (((g) & 0x3) << 20) | \
737 (((s) & 0x1) << 22) | \
738 (((c) & 0x7) << 23)))
739
740 /* To grandfather in prior block linear format modifiers to the above layout,
741 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
742 * with block-linear layouts, is remapped within drivers to the value 0xfe,
743 * which corresponds to the "generic" kind used for simple single-sample
744 * uncompressed color formats on Fermi - Volta GPUs.
745 */
746 static __inline__ __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)747 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
748 {
749 if (!(modifier & 0x10) || (modifier & (0xff << 12)))
750 return modifier;
751 else
752 return modifier | (0xfe << 12);
753 }
754
755 /*
756 * 16Bx2 Block Linear layout, used by Tegra K1 and later
757 *
758 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
759 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
760 *
761 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
762 *
763 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
764 * Valid values are:
765 *
766 * 0 == ONE_GOB
767 * 1 == TWO_GOBS
768 * 2 == FOUR_GOBS
769 * 3 == EIGHT_GOBS
770 * 4 == SIXTEEN_GOBS
771 * 5 == THIRTYTWO_GOBS
772 *
773 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
774 * in full detail.
775 */
776 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
777 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
778
779 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
780 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
781 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
782 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
783 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
784 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
785 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
786 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
787 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
788 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
789 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
790 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
791
792 /*
793 * Some Broadcom modifiers take parameters, for example the number of
794 * vertical lines in the image. Reserve the lower 32 bits for modifier
795 * type, and the next 24 bits for parameters. Top 8 bits are the
796 * vendor code.
797 */
798 #define __fourcc_mod_broadcom_param_shift 8
799 #define __fourcc_mod_broadcom_param_bits 48
800 #define fourcc_mod_broadcom_code(val, params) \
801 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
802 #define fourcc_mod_broadcom_param(m) \
803 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
804 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
805 #define fourcc_mod_broadcom_mod(m) \
806 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
807 __fourcc_mod_broadcom_param_shift))
808
809 /*
810 * Broadcom VC4 "T" format
811 *
812 * This is the primary layout that the V3D GPU can texture from (it
813 * can't do linear). The T format has:
814 *
815 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
816 * pixels at 32 bit depth.
817 *
818 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
819 * 16x16 pixels).
820 *
821 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
822 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
823 * they're (TR, BR, BL, TL), where bottom left is start of memory.
824 *
825 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
826 * tiles) or right-to-left (odd rows of 4k tiles).
827 */
828 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
829
830 /*
831 * Broadcom SAND format
832 *
833 * This is the native format that the H.264 codec block uses. For VC4
834 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
835 *
836 * The image can be considered to be split into columns, and the
837 * columns are placed consecutively into memory. The width of those
838 * columns can be either 32, 64, 128, or 256 pixels, but in practice
839 * only 128 pixel columns are used.
840 *
841 * The pitch between the start of each column is set to optimally
842 * switch between SDRAM banks. This is passed as the number of lines
843 * of column width in the modifier (we can't use the stride value due
844 * to various core checks that look at it , so you should set the
845 * stride to width*cpp).
846 *
847 * Note that the column height for this format modifier is the same
848 * for all of the planes, assuming that each column contains both Y
849 * and UV. Some SAND-using hardware stores UV in a separate tiled
850 * image from Y to reduce the column height, which is not supported
851 * with these modifiers.
852 *
853 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
854 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
855 * wide, but as this is a 10 bpp format that translates to 96 pixels.
856 */
857
858 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
859 fourcc_mod_broadcom_code(2, v)
860 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
861 fourcc_mod_broadcom_code(3, v)
862 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
863 fourcc_mod_broadcom_code(4, v)
864 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
865 fourcc_mod_broadcom_code(5, v)
866
867 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
868 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
869 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
870 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
871 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
872 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
873 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
874 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
875
876 /* Broadcom UIF format
877 *
878 * This is the common format for the current Broadcom multimedia
879 * blocks, including V3D 3.x and newer, newer video codecs, and
880 * displays.
881 *
882 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
883 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
884 * stored in columns, with padding between the columns to ensure that
885 * moving from one column to the next doesn't hit the same SDRAM page
886 * bank.
887 *
888 * To calculate the padding, it is assumed that each hardware block
889 * and the software driving it knows the platform's SDRAM page size,
890 * number of banks, and XOR address, and that it's identical between
891 * all blocks using the format. This tiling modifier will use XOR as
892 * necessary to reduce the padding. If a hardware block can't do XOR,
893 * the assumption is that a no-XOR tiling modifier will be created.
894 */
895 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
896
897 /*
898 * Arm Framebuffer Compression (AFBC) modifiers
899 *
900 * AFBC is a proprietary lossless image compression protocol and format.
901 * It provides fine-grained random access and minimizes the amount of data
902 * transferred between IP blocks.
903 *
904 * AFBC has several features which may be supported and/or used, which are
905 * represented using bits in the modifier. Not all combinations are valid,
906 * and different devices or use-cases may support different combinations.
907 *
908 * Further information on the use of AFBC modifiers can be found in
909 * Documentation/gpu/afbc.rst
910 */
911
912 /*
913 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
914 * modifiers) denote the category for modifiers. Currently we have three
915 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
916 * sixteen different categories.
917 */
918 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
919 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
920
921 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
922 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
923
924 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
925 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
926
927 /*
928 * AFBC superblock size
929 *
930 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
931 * size (in pixels) must be aligned to a multiple of the superblock size.
932 * Four lowest significant bits(LSBs) are reserved for block size.
933 *
934 * Where one superblock size is specified, it applies to all planes of the
935 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
936 * the first applies to the Luma plane and the second applies to the Chroma
937 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
938 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
939 */
940 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
941 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
942 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
943 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
944 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
945
946 /*
947 * AFBC lossless colorspace transform
948 *
949 * Indicates that the buffer makes use of the AFBC lossless colorspace
950 * transform.
951 */
952 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
953
954 /*
955 * AFBC block-split
956 *
957 * Indicates that the payload of each superblock is split. The second
958 * half of the payload is positioned at a predefined offset from the start
959 * of the superblock payload.
960 */
961 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
962
963 /*
964 * AFBC sparse layout
965 *
966 * This flag indicates that the payload of each superblock must be stored at a
967 * predefined position relative to the other superblocks in the same AFBC
968 * buffer. This order is the same order used by the header buffer. In this mode
969 * each superblock is given the same amount of space as an uncompressed
970 * superblock of the particular format would require, rounding up to the next
971 * multiple of 128 bytes in size.
972 */
973 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
974
975 /*
976 * AFBC copy-block restrict
977 *
978 * Buffers with this flag must obey the copy-block restriction. The restriction
979 * is such that there are no copy-blocks referring across the border of 8x8
980 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
981 */
982 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
983
984 /*
985 * AFBC tiled layout
986 *
987 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
988 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
989 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
990 * larger bpp formats. The order between the tiles is scan line.
991 * When the tiled layout is used, the buffer size (in pixels) must be aligned
992 * to the tile size.
993 */
994 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
995
996 /*
997 * AFBC solid color blocks
998 *
999 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1000 * can be reduced if a whole superblock is a single color.
1001 */
1002 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
1003
1004 /*
1005 * AFBC double-buffer
1006 *
1007 * Indicates that the buffer is allocated in a layout safe for front-buffer
1008 * rendering.
1009 */
1010 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
1011
1012 /*
1013 * AFBC buffer content hints
1014 *
1015 * Indicates that the buffer includes per-superblock content hints.
1016 */
1017 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1018
1019 /* AFBC uncompressed storage mode
1020 *
1021 * Indicates that the buffer is using AFBC uncompressed storage mode.
1022 * In this mode all superblock payloads in the buffer use the uncompressed
1023 * storage mode, which is usually only used for data which cannot be compressed.
1024 * The buffer layout is the same as for AFBC buffers without USM set, this only
1025 * affects the storage mode of the individual superblocks. Note that even a
1026 * buffer without USM set may use uncompressed storage mode for some or all
1027 * superblocks, USM just guarantees it for all.
1028 */
1029 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1030
1031 /*
1032 * Arm Fixed-Rate Compression (AFRC) modifiers
1033 *
1034 * AFRC is a proprietary fixed rate image compression protocol and format,
1035 * designed to provide guaranteed bandwidth and memory footprint
1036 * reductions in graphics and media use-cases.
1037 *
1038 * AFRC buffers consist of one or more planes, with the same components
1039 * and meaning as an uncompressed buffer using the same pixel format.
1040 *
1041 * Within each plane, the pixel/luma/chroma values are grouped into
1042 * "coding unit" blocks which are individually compressed to a
1043 * fixed size (in bytes). All coding units within a given plane of a buffer
1044 * store the same number of values, and have the same compressed size.
1045 *
1046 * The coding unit size is configurable, allowing different rates of compression.
1047 *
1048 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1049 * depends on the coding unit size.
1050 *
1051 * Coding Unit Size Plane Alignment
1052 * ---------------- ---------------
1053 * 16 bytes 1024 bytes
1054 * 24 bytes 512 bytes
1055 * 32 bytes 2048 bytes
1056 *
1057 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1058 * to a multiple of the paging tile dimensions.
1059 * The dimensions of each paging tile depend on whether the buffer is optimised for
1060 * scanline (SCAN layout) or rotated (ROT layout) access.
1061 *
1062 * Layout Paging Tile Width Paging Tile Height
1063 * ------ ----------------- ------------------
1064 * SCAN 16 coding units 4 coding units
1065 * ROT 8 coding units 8 coding units
1066 *
1067 * The dimensions of each coding unit depend on the number of components
1068 * in the compressed plane and whether the buffer is optimised for
1069 * scanline (SCAN layout) or rotated (ROT layout) access.
1070 *
1071 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1072 * ----------------------------- --------- ----------------- ------------------
1073 * 1 SCAN 16 samples 4 samples
1074 * Example: 16x4 luma samples in a 'Y' plane
1075 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1076 * ----------------------------- --------- ----------------- ------------------
1077 * 1 ROT 8 samples 8 samples
1078 * Example: 8x8 luma samples in a 'Y' plane
1079 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1080 * ----------------------------- --------- ----------------- ------------------
1081 * 2 DONT CARE 8 samples 4 samples
1082 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1083 * ----------------------------- --------- ----------------- ------------------
1084 * 3 DONT CARE 4 samples 4 samples
1085 * Example: 4x4 pixels in an RGB buffer without alpha
1086 * ----------------------------- --------- ----------------- ------------------
1087 * 4 DONT CARE 4 samples 4 samples
1088 * Example: 4x4 pixels in an RGB buffer with alpha
1089 */
1090
1091 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1092
1093 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1094 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1095
1096 /*
1097 * AFRC coding unit size modifier.
1098 *
1099 * Indicates the number of bytes used to store each compressed coding unit for
1100 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1101 * is the same for both Cb and Cr, which may be stored in separate planes.
1102 *
1103 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1104 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1105 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1106 * this corresponds to the luma plane.
1107 *
1108 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1109 * each compressed coding unit in the second and third planes in the buffer.
1110 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1111 *
1112 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1113 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1114 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1115 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1116 */
1117 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1118 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1119 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1120 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1121
1122 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1123 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1124
1125 /*
1126 * AFRC scanline memory layout.
1127 *
1128 * Indicates if the buffer uses the scanline-optimised layout
1129 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1130 * The memory layout is the same for all planes.
1131 */
1132 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1133
1134 /*
1135 * Arm 16x16 Block U-Interleaved modifier
1136 *
1137 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1138 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1139 * in the block are reordered.
1140 */
1141 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1142 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1143
1144 /*
1145 * Allwinner tiled modifier
1146 *
1147 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1148 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1149 * planes.
1150 *
1151 * With this tiling, the luminance samples are disposed in tiles representing
1152 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1153 * The pixel order in each tile is linear and the tiles are disposed linearly,
1154 * both in row-major order.
1155 */
1156 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1157
1158 /*
1159 * Amlogic Video Framebuffer Compression modifiers
1160 *
1161 * Amlogic uses a proprietary lossless image compression protocol and format
1162 * for their hardware video codec accelerators, either video decoders or
1163 * video input encoders.
1164 *
1165 * It considerably reduces memory bandwidth while writing and reading
1166 * frames in memory.
1167 *
1168 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1169 * per component YCbCr 420, single plane :
1170 * - DRM_FORMAT_YUV420_8BIT
1171 * - DRM_FORMAT_YUV420_10BIT
1172 *
1173 * The first 8 bits of the mode defines the layout, then the following 8 bits
1174 * defines the options changing the layout.
1175 *
1176 * Not all combinations are valid, and different SoCs may support different
1177 * combinations of layout and options.
1178 */
1179 #define __fourcc_mod_amlogic_layout_mask 0xff
1180 #define __fourcc_mod_amlogic_options_shift 8
1181 #define __fourcc_mod_amlogic_options_mask 0xff
1182
1183 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1184 fourcc_mod_code(AMLOGIC, \
1185 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1186 (((__options) & __fourcc_mod_amlogic_options_mask) \
1187 << __fourcc_mod_amlogic_options_shift))
1188
1189 /* Amlogic FBC Layouts */
1190
1191 /*
1192 * Amlogic FBC Basic Layout
1193 *
1194 * The basic layout is composed of:
1195 * - a body content organized in 64x32 superblocks with 4096 bytes per
1196 * superblock in default mode.
1197 * - a 32 bytes per 128x64 header block
1198 *
1199 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1200 */
1201 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1202
1203 /*
1204 * Amlogic FBC Scatter Memory layout
1205 *
1206 * Indicates the header contains IOMMU references to the compressed
1207 * frames content to optimize memory access and layout.
1208 *
1209 * In this mode, only the header memory address is needed, thus the
1210 * content memory organization is tied to the current producer
1211 * execution and cannot be saved/dumped neither transferrable between
1212 * Amlogic SoCs supporting this modifier.
1213 *
1214 * Due to the nature of the layout, these buffers are not expected to
1215 * be accessible by the user-space clients, but only accessible by the
1216 * hardware producers and consumers.
1217 *
1218 * The user-space clients should expect a failure while trying to mmap
1219 * the DMA-BUF handle returned by the producer.
1220 */
1221 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1222
1223 /* Amlogic FBC Layout Options Bit Mask */
1224
1225 /*
1226 * Amlogic FBC Memory Saving mode
1227 *
1228 * Indicates the storage is packed when pixel size is multiple of word
1229 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1230 * memory.
1231 *
1232 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1233 * the basic layout and 3200 bytes per 64x32 superblock combined with
1234 * the scatter layout.
1235 */
1236 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1237
1238 /*
1239 * AMD modifiers
1240 *
1241 * Memory layout:
1242 *
1243 * without DCC:
1244 * - main surface
1245 *
1246 * with DCC & without DCC_RETILE:
1247 * - main surface in plane 0
1248 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1249 *
1250 * with DCC & DCC_RETILE:
1251 * - main surface in plane 0
1252 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1253 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1254 *
1255 * For multi-plane formats the above surfaces get merged into one plane for
1256 * each format plane, based on the required alignment only.
1257 *
1258 * Bits Parameter Notes
1259 * ----- ------------------------ ---------------------------------------------
1260 *
1261 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1262 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1263 * 13 DCC
1264 * 14 DCC_RETILE
1265 * 15 DCC_PIPE_ALIGN
1266 * 16 DCC_INDEPENDENT_64B
1267 * 17 DCC_INDEPENDENT_128B
1268 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1269 * 20 DCC_CONSTANT_ENCODE
1270 * 23:21 PIPE_XOR_BITS Only for some chips
1271 * 26:24 BANK_XOR_BITS Only for some chips
1272 * 29:27 PACKERS Only for some chips
1273 * 32:30 RB Only for some chips
1274 * 35:33 PIPE Only for some chips
1275 * 55:36 - Reserved for future use, must be zero
1276 */
1277 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1278
1279 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1280
1281 /* Reserve 0 for GFX8 and older */
1282 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1283 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1284 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1285
1286 /*
1287 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1288 * version.
1289 */
1290 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1291
1292 /*
1293 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1294 * GFX9 as canonical version.
1295 */
1296 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1297 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1298 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1299 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1300
1301 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1302 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1303 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1304
1305 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1306 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1307 #define AMD_FMT_MOD_TILE_SHIFT 8
1308 #define AMD_FMT_MOD_TILE_MASK 0x1F
1309
1310 /* Whether DCC compression is enabled. */
1311 #define AMD_FMT_MOD_DCC_SHIFT 13
1312 #define AMD_FMT_MOD_DCC_MASK 0x1
1313
1314 /*
1315 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1316 * one which is not-aligned.
1317 */
1318 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1319 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1320
1321 /* Only set if DCC_RETILE = false */
1322 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1323 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1324
1325 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1326 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1327 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1328 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1329 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1330 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1331
1332 /*
1333 * DCC supports embedding some clear colors directly in the DCC surface.
1334 * However, on older GPUs the rendering HW ignores the embedded clear color
1335 * and prefers the driver provided color. This necessitates doing a fastclear
1336 * eliminate operation before a process transfers control.
1337 *
1338 * If this bit is set that means the fastclear eliminate is not needed for these
1339 * embeddable colors.
1340 */
1341 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1342 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1343
1344 /*
1345 * The below fields are for accounting for per GPU differences. These are only
1346 * relevant for GFX9 and later and if the tile field is *_X/_T.
1347 *
1348 * PIPE_XOR_BITS = always needed
1349 * BANK_XOR_BITS = only for TILE_VER_GFX9
1350 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1351 * RB = only for TILE_VER_GFX9 & DCC
1352 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1353 */
1354 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1355 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1356 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1357 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1358 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1359 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1360 #define AMD_FMT_MOD_RB_SHIFT 30
1361 #define AMD_FMT_MOD_RB_MASK 0x7
1362 #define AMD_FMT_MOD_PIPE_SHIFT 33
1363 #define AMD_FMT_MOD_PIPE_MASK 0x7
1364
1365 #define AMD_FMT_MOD_SET(field, value) \
1366 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1367 #define AMD_FMT_MOD_GET(field, value) \
1368 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1369 #define AMD_FMT_MOD_CLEAR(field) \
1370 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1371
1372 #if defined(__cplusplus)
1373 }
1374 #endif
1375
1376 #endif /* DRM_FOURCC_H */
1377