1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "GeneratedTestHarness.h"
18 
19 #include <android-base/logging.h>
20 #include <android/hardware/neuralnetworks/1.0/IDevice.h>
21 #include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
22 #include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
23 #include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
24 #include <android/hardware/neuralnetworks/1.0/types.h>
25 #include <android/hardware/neuralnetworks/1.1/IDevice.h>
26 #include <android/hardware/neuralnetworks/1.2/IDevice.h>
27 #include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
28 #include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
29 #include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
30 #include <android/hardware/neuralnetworks/1.2/types.h>
31 #include <android/hardware/neuralnetworks/1.3/IDevice.h>
32 #include <android/hardware/neuralnetworks/1.3/IFencedExecutionCallback.h>
33 #include <android/hardware/neuralnetworks/1.3/IPreparedModel.h>
34 #include <android/hardware/neuralnetworks/1.3/IPreparedModelCallback.h>
35 #include <android/hardware/neuralnetworks/1.3/types.h>
36 #include <android/hidl/allocator/1.0/IAllocator.h>
37 #include <android/hidl/memory/1.0/IMemory.h>
38 #include <android/sync.h>
39 #include <gtest/gtest.h>
40 #include <hidlmemory/mapping.h>
41 
42 #include <algorithm>
43 #include <chrono>
44 #include <iostream>
45 #include <numeric>
46 #include <vector>
47 
48 #include "1.0/Utils.h"
49 #include "1.3/Callbacks.h"
50 #include "1.3/Utils.h"
51 #include "ExecutionBurstController.h"
52 #include "MemoryUtils.h"
53 #include "TestHarness.h"
54 #include "Utils.h"
55 #include "VtsHalNeuralnetworks.h"
56 
57 namespace android::hardware::neuralnetworks::V1_3::vts::functional {
58 
59 using namespace test_helper;
60 using hidl::memory::V1_0::IMemory;
61 using implementation::ExecutionCallback;
62 using implementation::PreparedModelCallback;
63 using V1_0::DataLocation;
64 using V1_0::RequestArgument;
65 using V1_1::ExecutionPreference;
66 using V1_2::Constant;
67 using V1_2::MeasureTiming;
68 using V1_2::OutputShape;
69 using V1_2::SymmPerChannelQuantParams;
70 using V1_2::Timing;
71 using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
72 
73 namespace {
74 
75 enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT, MISSED_DEADLINE };
76 
77 enum class IOType { INPUT, OUTPUT };
78 
79 struct TestConfig {
80     Executor executor;
81     MeasureTiming measureTiming;
82     OutputType outputType;
83     MemoryType memoryType;
84     // `reportSkipping` indicates if a test should print an info message in case
85     // it is skipped. The field is set to true by default and is set to false in
86     // quantization coupling tests to suppress skipping a test
87     bool reportSkipping;
TestConfigandroid::hardware::neuralnetworks::V1_3::vts::functional::__anon404ff7050111::TestConfig88     TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
89                MemoryType memoryType)
90         : executor(executor),
91           measureTiming(measureTiming),
92           outputType(outputType),
93           memoryType(memoryType),
94           reportSkipping(true) {}
TestConfigandroid::hardware::neuralnetworks::V1_3::vts::functional::__anon404ff7050111::TestConfig95     TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType,
96                MemoryType memoryType, bool reportSkipping)
97         : executor(executor),
98           measureTiming(measureTiming),
99           outputType(outputType),
100           memoryType(memoryType),
101           reportSkipping(reportSkipping) {}
102 };
103 
104 class DeviceMemoryAllocator {
105   public:
DeviceMemoryAllocator(const sp<IDevice> & device,const sp<IPreparedModel> & preparedModel,const TestModel & testModel)106     DeviceMemoryAllocator(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
107                           const TestModel& testModel)
108         : kDevice(device), kPreparedModel(preparedModel), kTestModel(testModel) {}
109 
110     // Allocate device memory for a target input/output operand.
111     // Return {IBuffer object, token} if successful.
112     // Return {nullptr, 0} if device memory is not supported.
113     template <IOType ioType>
allocate(uint32_t index)114     std::pair<sp<IBuffer>, uint32_t> allocate(uint32_t index) {
115         std::pair<sp<IBuffer>, uint32_t> buffer;
116         allocateInternal<ioType>(index, &buffer);
117         return buffer;
118     }
119 
120   private:
121     template <IOType ioType>
allocateInternal(uint32_t index,std::pair<sp<IBuffer>,uint32_t> * result)122     void allocateInternal(uint32_t index, std::pair<sp<IBuffer>, uint32_t>* result) {
123         ASSERT_NE(result, nullptr);
124 
125         // Prepare arguments.
126         BufferRole role = {.modelIndex = 0, .ioIndex = index, .frequency = 1.0f};
127         hidl_vec<BufferRole> inputRoles, outputRoles;
128         if constexpr (ioType == IOType::INPUT) {
129             inputRoles = {role};
130         } else {
131             outputRoles = {role};
132         }
133 
134         // Allocate device memory.
135         ErrorStatus status;
136         sp<IBuffer> buffer;
137         uint32_t token;
138         auto cb = [&status, &buffer, &token](ErrorStatus error, const sp<IBuffer>& buf,
139                                              uint32_t tok) {
140             status = error;
141             buffer = buf;
142             token = tok;
143         };
144         const auto ret = kDevice->allocate({}, {kPreparedModel}, inputRoles, outputRoles, cb);
145 
146         // Check allocation results.
147         ASSERT_TRUE(ret.isOk());
148         if (status == ErrorStatus::NONE) {
149             ASSERT_NE(buffer, nullptr);
150             ASSERT_GT(token, 0);
151         } else {
152             ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE);
153             ASSERT_EQ(buffer, nullptr);
154             ASSERT_EQ(token, 0);
155         }
156 
157         // Initialize input data from TestBuffer.
158         if constexpr (ioType == IOType::INPUT) {
159             if (buffer != nullptr) {
160                 // TestBuffer -> Shared memory.
161                 const auto& testBuffer =
162                         kTestModel.main.operands[kTestModel.main.inputIndexes[index]].data;
163                 ASSERT_GT(testBuffer.size(), 0);
164                 hidl_memory tmp = nn::allocateSharedMemory(testBuffer.size());
165                 sp<IMemory> inputMemory = mapMemory(tmp);
166                 ASSERT_NE(inputMemory.get(), nullptr);
167                 uint8_t* inputPtr =
168                         static_cast<uint8_t*>(static_cast<void*>(inputMemory->getPointer()));
169                 ASSERT_NE(inputPtr, nullptr);
170                 const uint8_t* begin = testBuffer.get<uint8_t>();
171                 const uint8_t* end = begin + testBuffer.size();
172                 std::copy(begin, end, inputPtr);
173 
174                 // Shared memory -> IBuffer.
175                 auto ret = buffer->copyFrom(tmp, {});
176                 ASSERT_TRUE(ret.isOk());
177                 ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
178             }
179         }
180         *result = {std::move(buffer), token};
181     }
182 
183     const sp<IDevice> kDevice;
184     const sp<IPreparedModel> kPreparedModel;
185     const TestModel& kTestModel;
186 };
187 
createSubgraph(const TestSubgraph & testSubgraph,uint32_t * constCopySize,std::vector<const TestBuffer * > * constCopies,uint32_t * constRefSize,std::vector<const TestBuffer * > * constReferences)188 Subgraph createSubgraph(const TestSubgraph& testSubgraph, uint32_t* constCopySize,
189                         std::vector<const TestBuffer*>* constCopies, uint32_t* constRefSize,
190                         std::vector<const TestBuffer*>* constReferences) {
191     CHECK(constCopySize != nullptr);
192     CHECK(constCopies != nullptr);
193     CHECK(constRefSize != nullptr);
194     CHECK(constReferences != nullptr);
195 
196     // Operands.
197     hidl_vec<Operand> operands(testSubgraph.operands.size());
198     for (uint32_t i = 0; i < testSubgraph.operands.size(); i++) {
199         const auto& op = testSubgraph.operands[i];
200 
201         DataLocation loc = {};
202         if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
203             loc = {
204                     .poolIndex = 0,
205                     .offset = *constCopySize,
206                     .length = static_cast<uint32_t>(op.data.size()),
207             };
208             constCopies->push_back(&op.data);
209             *constCopySize += op.data.alignedSize();
210         } else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
211             loc = {
212                     .poolIndex = 0,
213                     .offset = *constRefSize,
214                     .length = static_cast<uint32_t>(op.data.size()),
215             };
216             constReferences->push_back(&op.data);
217             *constRefSize += op.data.alignedSize();
218         } else if (op.lifetime == TestOperandLifeTime::SUBGRAPH) {
219             loc = {
220                     .poolIndex = 0,
221                     .offset = *op.data.get<uint32_t>(),
222                     .length = 0,
223             };
224         }
225 
226         V1_2::Operand::ExtraParams extraParams;
227         if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
228             extraParams.channelQuant(SymmPerChannelQuantParams{
229                     .scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
230         }
231 
232         operands[i] = {.type = static_cast<OperandType>(op.type),
233                        .dimensions = op.dimensions,
234                        .numberOfConsumers = op.numberOfConsumers,
235                        .scale = op.scale,
236                        .zeroPoint = op.zeroPoint,
237                        .lifetime = static_cast<OperandLifeTime>(op.lifetime),
238                        .location = loc,
239                        .extraParams = std::move(extraParams)};
240     }
241 
242     // Operations.
243     hidl_vec<Operation> operations(testSubgraph.operations.size());
244     std::transform(testSubgraph.operations.begin(), testSubgraph.operations.end(),
245                    operations.begin(), [](const TestOperation& op) -> Operation {
246                        return {.type = static_cast<OperationType>(op.type),
247                                .inputs = op.inputs,
248                                .outputs = op.outputs};
249                    });
250 
251     return {.operands = std::move(operands),
252             .operations = std::move(operations),
253             .inputIndexes = testSubgraph.inputIndexes,
254             .outputIndexes = testSubgraph.outputIndexes};
255 }
256 
copyTestBuffers(const std::vector<const TestBuffer * > & buffers,uint8_t * output)257 void copyTestBuffers(const std::vector<const TestBuffer*>& buffers, uint8_t* output) {
258     uint32_t offset = 0;
259     for (const TestBuffer* buffer : buffers) {
260         const uint8_t* begin = buffer->get<uint8_t>();
261         const uint8_t* end = begin + buffer->size();
262         std::copy(begin, end, output + offset);
263         offset += buffer->alignedSize();
264     }
265 }
266 
267 }  // namespace
268 
waitForSyncFence(int syncFd)269 void waitForSyncFence(int syncFd) {
270     constexpr int kInfiniteTimeout = -1;
271     ASSERT_GT(syncFd, 0);
272     int r = sync_wait(syncFd, kInfiniteTimeout);
273     ASSERT_GE(r, 0);
274 }
275 
createModel(const TestModel & testModel)276 Model createModel(const TestModel& testModel) {
277     uint32_t constCopySize = 0;
278     uint32_t constRefSize = 0;
279     std::vector<const TestBuffer*> constCopies;
280     std::vector<const TestBuffer*> constReferences;
281 
282     Subgraph mainSubgraph = createSubgraph(testModel.main, &constCopySize, &constCopies,
283                                            &constRefSize, &constReferences);
284     hidl_vec<Subgraph> refSubgraphs(testModel.referenced.size());
285     std::transform(testModel.referenced.begin(), testModel.referenced.end(), refSubgraphs.begin(),
286                    [&constCopySize, &constCopies, &constRefSize,
287                     &constReferences](const TestSubgraph& testSubgraph) {
288                        return createSubgraph(testSubgraph, &constCopySize, &constCopies,
289                                              &constRefSize, &constReferences);
290                    });
291 
292     // Constant copies.
293     hidl_vec<uint8_t> operandValues(constCopySize);
294     copyTestBuffers(constCopies, operandValues.data());
295 
296     // Shared memory.
297     hidl_vec<hidl_memory> pools = {};
298     if (constRefSize > 0) {
299         hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
300         CHECK_NE(pools[0].size(), 0u);
301 
302         // load data
303         sp<IMemory> mappedMemory = mapMemory(pools[0]);
304         CHECK(mappedMemory.get() != nullptr);
305         uint8_t* mappedPtr =
306                 reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
307         CHECK(mappedPtr != nullptr);
308 
309         copyTestBuffers(constReferences, mappedPtr);
310     }
311 
312     return {.main = std::move(mainSubgraph),
313             .referenced = std::move(refSubgraphs),
314             .operandValues = std::move(operandValues),
315             .pools = std::move(pools),
316             .relaxComputationFloat32toFloat16 = testModel.isRelaxed};
317 }
318 
isOutputSizeGreaterThanOne(const TestModel & testModel,uint32_t index)319 static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
320     const auto byteSize = testModel.main.operands[testModel.main.outputIndexes[index]].data.size();
321     return byteSize > 1u;
322 }
323 
makeOutputInsufficientSize(uint32_t outputIndex,Request * request)324 static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
325     auto& length = request->outputs[outputIndex].location.length;
326     ASSERT_GT(length, 1u);
327     length -= 1u;
328 }
329 
makeOutputDimensionsUnspecified(Model * model)330 static void makeOutputDimensionsUnspecified(Model* model) {
331     for (auto i : model->main.outputIndexes) {
332         auto& dims = model->main.operands[i].dimensions;
333         std::fill(dims.begin(), dims.end(), 0);
334     }
335 }
336 
337 class ExecutionContextV1_3 {
338   public:
ExecutionContextV1_3(sp<IDevice> device,sp<IPreparedModel> preparedModel)339     ExecutionContextV1_3(sp<IDevice> device, sp<IPreparedModel> preparedModel)
340         : kDevice(std::move(device)), kPreparedModel(std::move(preparedModel)) {}
341 
342     std::optional<Request> createRequest(const TestModel& testModel, MemoryType memoryType);
343     std::vector<TestBuffer> getOutputBuffers(const TestModel& testModel,
344                                              const Request& request) const;
345 
346   private:
347     // Get a TestBuffer with data copied from an IBuffer object.
348     void getBuffer(const sp<IBuffer>& buffer, size_t size, TestBuffer* testBuffer) const;
349 
350     static constexpr uint32_t kInputPoolIndex = 0;
351     static constexpr uint32_t kOutputPoolIndex = 1;
352     static constexpr uint32_t kDeviceMemoryBeginIndex = 2;
353 
354     const sp<IDevice> kDevice;
355     const sp<IPreparedModel> kPreparedModel;
356     std::unique_ptr<TestMemoryBase> mInputMemory, mOutputMemory;
357     std::vector<sp<IBuffer>> mBuffers;
358 };
359 
createRequest(const TestModel & testModel,MemoryType memoryType)360 std::optional<Request> ExecutionContextV1_3::createRequest(const TestModel& testModel,
361                                                            MemoryType memoryType) {
362     // Memory pools are organized as:
363     // - 0: Input shared memory pool
364     // - 1: Output shared memory pool
365     // - [2, 2+i): Input device memories
366     // - [2+i, 2+i+o): Output device memories
367     DeviceMemoryAllocator allocator(kDevice, kPreparedModel, testModel);
368     std::vector<uint32_t> tokens;
369     mBuffers.clear();
370 
371     // Model inputs.
372     hidl_vec<RequestArgument> inputs(testModel.main.inputIndexes.size());
373     size_t inputSize = 0;
374     for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
375         const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
376         if (op.data.size() == 0) {
377             // Omitted input.
378             inputs[i] = {.hasNoValue = true};
379             continue;
380         } else if (memoryType == MemoryType::DEVICE) {
381             SCOPED_TRACE("Input index = " + std::to_string(i));
382             auto [buffer, token] = allocator.allocate<IOType::INPUT>(i);
383             if (buffer != nullptr) {
384                 DataLocation loc = {.poolIndex = static_cast<uint32_t>(mBuffers.size() +
385                                                                        kDeviceMemoryBeginIndex)};
386                 mBuffers.push_back(std::move(buffer));
387                 tokens.push_back(token);
388                 inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
389                 continue;
390             }
391         }
392 
393         // Reserve shared memory for input.
394         DataLocation loc = {.poolIndex = kInputPoolIndex,
395                             .offset = static_cast<uint32_t>(inputSize),
396                             .length = static_cast<uint32_t>(op.data.size())};
397         inputSize += op.data.alignedSize();
398         inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
399     }
400 
401     // Model outputs.
402     hidl_vec<RequestArgument> outputs(testModel.main.outputIndexes.size());
403     size_t outputSize = 0;
404     for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
405         const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
406         if (memoryType == MemoryType::DEVICE) {
407             SCOPED_TRACE("Output index = " + std::to_string(i));
408             auto [buffer, token] = allocator.allocate<IOType::OUTPUT>(i);
409             if (buffer != nullptr) {
410                 DataLocation loc = {.poolIndex = static_cast<uint32_t>(mBuffers.size() +
411                                                                        kDeviceMemoryBeginIndex)};
412                 mBuffers.push_back(std::move(buffer));
413                 tokens.push_back(token);
414                 outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
415                 continue;
416             }
417         }
418 
419         // In the case of zero-sized output, we should at least provide a one-byte buffer.
420         // This is because zero-sized tensors are only supported internally to the driver, or
421         // reported in output shapes. It is illegal for the client to pre-specify a zero-sized
422         // tensor as model output. Otherwise, we will have two semantic conflicts:
423         // - "Zero dimension" conflicts with "unspecified dimension".
424         // - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
425         size_t bufferSize = std::max<size_t>(op.data.size(), 1);
426 
427         // Reserve shared memory for output.
428         DataLocation loc = {.poolIndex = kOutputPoolIndex,
429                             .offset = static_cast<uint32_t>(outputSize),
430                             .length = static_cast<uint32_t>(bufferSize)};
431         outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
432         outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
433     }
434 
435     if (memoryType == MemoryType::DEVICE && mBuffers.empty()) {
436         return std::nullopt;
437     }
438 
439     // Memory pools.
440     hidl_vec<Request::MemoryPool> pools(kDeviceMemoryBeginIndex + mBuffers.size());
441     if (memoryType == MemoryType::BLOB_AHWB) {
442         mInputMemory = TestBlobAHWB::create(std::max<size_t>(inputSize, 1));
443         mOutputMemory = TestBlobAHWB::create(std::max<size_t>(outputSize, 1));
444     } else {
445         mInputMemory = TestAshmem::create(std::max<size_t>(inputSize, 1));
446         mOutputMemory = TestAshmem::create(std::max<size_t>(outputSize, 1));
447     }
448     EXPECT_NE(mInputMemory, nullptr);
449     EXPECT_NE(mOutputMemory, nullptr);
450     pools[kInputPoolIndex].hidlMemory(mInputMemory->getHidlMemory());
451     pools[kOutputPoolIndex].hidlMemory(mOutputMemory->getHidlMemory());
452     for (uint32_t i = 0; i < mBuffers.size(); i++) {
453         pools[kDeviceMemoryBeginIndex + i].token(tokens[i]);
454     }
455 
456     // Copy input data to the input shared memory pool.
457     uint8_t* inputPtr = mInputMemory->getPointer();
458     for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
459         if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) {
460             const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
461             const uint8_t* begin = op.data.get<uint8_t>();
462             const uint8_t* end = begin + op.data.size();
463             std::copy(begin, end, inputPtr + inputs[i].location.offset);
464         }
465     }
466     return Request{
467             .inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
468 }
469 
getOutputBuffers(const TestModel & testModel,const Request & request) const470 std::vector<TestBuffer> ExecutionContextV1_3::getOutputBuffers(const TestModel& testModel,
471                                                                const Request& request) const {
472     // Copy out output results.
473     uint8_t* outputPtr = mOutputMemory->getPointer();
474     std::vector<TestBuffer> outputBuffers;
475     for (uint32_t i = 0; i < request.outputs.size(); i++) {
476         const auto& outputLoc = request.outputs[i].location;
477         if (outputLoc.poolIndex == kOutputPoolIndex) {
478             outputBuffers.emplace_back(outputLoc.length, outputPtr + outputLoc.offset);
479         } else {
480             const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
481             if (op.data.size() == 0) {
482                 outputBuffers.emplace_back(0, nullptr);
483             } else {
484                 SCOPED_TRACE("Output index = " + std::to_string(i));
485                 const uint32_t bufferIndex = outputLoc.poolIndex - kDeviceMemoryBeginIndex;
486                 TestBuffer buffer;
487                 getBuffer(mBuffers[bufferIndex], op.data.size(), &buffer);
488                 outputBuffers.push_back(std::move(buffer));
489             }
490         }
491     }
492     return outputBuffers;
493 }
494 
495 // Get a TestBuffer with data copied from an IBuffer object.
getBuffer(const sp<IBuffer> & buffer,size_t size,TestBuffer * testBuffer) const496 void ExecutionContextV1_3::getBuffer(const sp<IBuffer>& buffer, size_t size,
497                                      TestBuffer* testBuffer) const {
498     // IBuffer -> Shared memory.
499     hidl_memory tmp = nn::allocateSharedMemory(size);
500     const auto ret = buffer->copyTo(tmp);
501     ASSERT_TRUE(ret.isOk());
502     ASSERT_EQ(static_cast<ErrorStatus>(ret), ErrorStatus::NONE);
503 
504     // Shared memory -> TestBuffer.
505     sp<IMemory> outputMemory = mapMemory(tmp);
506     ASSERT_NE(outputMemory.get(), nullptr);
507     uint8_t* outputPtr = static_cast<uint8_t*>(static_cast<void*>(outputMemory->getPointer()));
508     ASSERT_NE(outputPtr, nullptr);
509     ASSERT_NE(testBuffer, nullptr);
510     *testBuffer = TestBuffer(size, outputPtr);
511 }
512 
hasZeroSizedOutput(const TestModel & testModel)513 static bool hasZeroSizedOutput(const TestModel& testModel) {
514     return std::any_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(),
515                        [&testModel](uint32_t index) {
516                            return testModel.main.operands[index].data.size() == 0;
517                        });
518 }
519 
ExecutePreparedModel(const sp<IPreparedModel> & preparedModel,const Request & request,MeasureTiming measure,const OptionalTimeoutDuration & loopTimeoutDuration,sp<ExecutionCallback> & callback)520 static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
521                                                 const Request& request, MeasureTiming measure,
522                                                 const OptionalTimeoutDuration& loopTimeoutDuration,
523                                                 sp<ExecutionCallback>& callback) {
524     return preparedModel->execute_1_3(request, measure, {}, loopTimeoutDuration, callback);
525 }
ExecutePreparedModel(const sp<IPreparedModel> & preparedModel,const Request & request,MeasureTiming measure,const OptionalTimeoutDuration & loopTimeoutDuration,hidl_vec<OutputShape> * outputShapes,Timing * timing)526 static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
527                                                 const Request& request, MeasureTiming measure,
528                                                 const OptionalTimeoutDuration& loopTimeoutDuration,
529                                                 hidl_vec<OutputShape>* outputShapes,
530                                                 Timing* timing) {
531     ErrorStatus result;
532     Return<void> ret = preparedModel->executeSynchronously_1_3(
533             request, measure, {}, loopTimeoutDuration,
534             [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
535                                             const Timing& time) {
536                 result = error;
537                 *outputShapes = shapes;
538                 *timing = time;
539             });
540     if (!ret.isOk()) {
541         return ErrorStatus::GENERAL_FAILURE;
542     }
543     return result;
544 }
CreateBurst(const sp<IPreparedModel> & preparedModel)545 static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
546         const sp<IPreparedModel>& preparedModel) {
547     return android::nn::ExecutionBurstController::create(preparedModel,
548                                                          std::chrono::microseconds{0});
549 }
550 
EvaluatePreparedModel(const sp<IDevice> & device,const sp<IPreparedModel> & preparedModel,const TestModel & testModel,const TestConfig & testConfig,bool * skipped=nullptr)551 void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
552                            const TestModel& testModel, const TestConfig& testConfig,
553                            bool* skipped = nullptr) {
554     if (skipped != nullptr) {
555         *skipped = false;
556     }
557     // If output0 does not have size larger than one byte, we can not test with insufficient buffer.
558     if (testConfig.outputType == OutputType::INSUFFICIENT &&
559         !isOutputSizeGreaterThanOne(testModel, 0)) {
560         return;
561     }
562 
563     ExecutionContextV1_3 context(device, preparedModel);
564     auto maybeRequest = context.createRequest(testModel, testConfig.memoryType);
565     // Skip if testing memory domain but no device memory has been allocated.
566     if (!maybeRequest.has_value()) {
567         return;
568     }
569 
570     Request request = std::move(maybeRequest.value());
571 
572     constexpr uint32_t kInsufficientOutputIndex = 0;
573     if (testConfig.outputType == OutputType::INSUFFICIENT) {
574         makeOutputInsufficientSize(kInsufficientOutputIndex, &request);
575     }
576 
577     OptionalTimeoutDuration loopTimeoutDuration;
578     // OutputType::MISSED_DEADLINE is only used by
579     // TestKind::INTINITE_LOOP_TIMEOUT tests to verify that an infinite loop is
580     // aborted after a timeout.
581     if (testConfig.outputType == OutputType::MISSED_DEADLINE) {
582         // Override the default loop timeout duration with a small value to
583         // speed up test execution.
584         constexpr uint64_t kMillisecond = 1'000'000;
585         loopTimeoutDuration.nanoseconds(1 * kMillisecond);
586     }
587 
588     ErrorStatus executionStatus;
589     hidl_vec<OutputShape> outputShapes;
590     Timing timing;
591     switch (testConfig.executor) {
592         case Executor::ASYNC: {
593             SCOPED_TRACE("asynchronous");
594 
595             // launch execution
596             sp<ExecutionCallback> executionCallback = new ExecutionCallback();
597             Return<ErrorStatus> executionLaunchStatus =
598                     ExecutePreparedModel(preparedModel, request, testConfig.measureTiming,
599                                          loopTimeoutDuration, executionCallback);
600             ASSERT_TRUE(executionLaunchStatus.isOk());
601             EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
602 
603             // retrieve execution status
604             executionCallback->wait();
605             executionStatus = executionCallback->getStatus();
606             outputShapes = executionCallback->getOutputShapes();
607             timing = executionCallback->getTiming();
608 
609             break;
610         }
611         case Executor::SYNC: {
612             SCOPED_TRACE("synchronous");
613 
614             // execute
615             Return<ErrorStatus> executionReturnStatus =
616                     ExecutePreparedModel(preparedModel, request, testConfig.measureTiming,
617                                          loopTimeoutDuration, &outputShapes, &timing);
618             ASSERT_TRUE(executionReturnStatus.isOk());
619             executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
620 
621             break;
622         }
623         case Executor::BURST: {
624             // TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains
625             //                      V1_2.
626             SCOPED_TRACE("burst");
627 
628             // check compliance
629             ASSERT_TRUE(nn::compliantWithV1_0(request));
630             V1_0::Request request10 = nn::convertToV1_0(request);
631 
632             // create burst
633             const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
634                     CreateBurst(preparedModel);
635             ASSERT_NE(nullptr, controller.get());
636 
637             // create memory keys
638             std::vector<intptr_t> keys(request10.pools.size());
639             for (size_t i = 0; i < keys.size(); ++i) {
640                 keys[i] = reinterpret_cast<intptr_t>(&request10.pools[i]);
641             }
642 
643             // execute burst
644             int n;
645             std::tie(n, outputShapes, timing, std::ignore) =
646                     controller->compute(request10, testConfig.measureTiming, keys);
647             executionStatus = nn::convertToV1_3(nn::convertResultCodeToErrorStatus(n));
648 
649             break;
650         }
651         case Executor::FENCED: {
652             SCOPED_TRACE("fenced");
653             ErrorStatus result;
654             hidl_handle syncFenceHandle;
655             sp<IFencedExecutionCallback> fencedCallback;
656             auto callbackFunc = [&result, &syncFenceHandle, &fencedCallback](
657                                         ErrorStatus error, const hidl_handle& handle,
658                                         const sp<IFencedExecutionCallback>& callback) {
659                 result = error;
660                 syncFenceHandle = handle;
661                 fencedCallback = callback;
662             };
663             Return<void> ret =
664                     preparedModel->executeFenced(request, {}, testConfig.measureTiming, {},
665                                                  loopTimeoutDuration, {}, callbackFunc);
666             ASSERT_TRUE(ret.isOk());
667             if (result != ErrorStatus::NONE) {
668                 ASSERT_EQ(syncFenceHandle.getNativeHandle(), nullptr);
669                 ASSERT_EQ(fencedCallback, nullptr);
670                 executionStatus = result;
671                 timing = {UINT64_MAX, UINT64_MAX};
672             } else if (syncFenceHandle.getNativeHandle()) {
673                 // If a sync fence is returned, try start another run waiting for the sync fence.
674                 ret = preparedModel->executeFenced(request, {syncFenceHandle},
675                                                    testConfig.measureTiming, {},
676                                                    loopTimeoutDuration, {}, callbackFunc);
677                 ASSERT_TRUE(ret.isOk());
678                 ASSERT_EQ(result, ErrorStatus::NONE);
679                 waitForSyncFence(syncFenceHandle.getNativeHandle()->data[0]);
680             }
681             if (result == ErrorStatus::NONE) {
682                 ASSERT_NE(fencedCallback, nullptr);
683                 Return<void> ret = fencedCallback->getExecutionInfo(
684                         [&executionStatus, &timing](ErrorStatus error, Timing t, Timing) {
685                             executionStatus = error;
686                             timing = t;
687                         });
688                 ASSERT_TRUE(ret.isOk());
689             }
690             break;
691         }
692     }
693 
694     if (testConfig.outputType != OutputType::FULLY_SPECIFIED &&
695         executionStatus == ErrorStatus::GENERAL_FAILURE) {
696         if (skipped != nullptr) {
697             *skipped = true;
698         }
699         if (!testConfig.reportSkipping) {
700             return;
701         }
702         LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
703                      "execute model that it does not support.";
704         std::cout << "[          ]   Early termination of test because vendor service cannot "
705                      "execute model that it does not support."
706                   << std::endl;
707         GTEST_SKIP();
708     }
709     if (testConfig.measureTiming == MeasureTiming::NO) {
710         EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
711         EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
712     } else {
713         if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
714             EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
715         }
716     }
717 
718     switch (testConfig.outputType) {
719         case OutputType::FULLY_SPECIFIED:
720             if (testConfig.executor == Executor::FENCED && hasZeroSizedOutput(testModel)) {
721                 // Executor::FENCED does not support zero-sized output.
722                 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
723                 return;
724             }
725             // If the model output operands are fully specified, outputShapes must be either
726             // either empty, or have the same number of elements as the number of outputs.
727             ASSERT_EQ(ErrorStatus::NONE, executionStatus);
728             ASSERT_TRUE(outputShapes.size() == 0 ||
729                         outputShapes.size() == testModel.main.outputIndexes.size());
730             break;
731         case OutputType::UNSPECIFIED:
732             if (testConfig.executor == Executor::FENCED) {
733                 // For Executor::FENCED, the output shape must be fully specified.
734                 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
735                 return;
736             }
737             // If the model output operands are not fully specified, outputShapes must have
738             // the same number of elements as the number of outputs.
739             ASSERT_EQ(ErrorStatus::NONE, executionStatus);
740             ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
741             break;
742         case OutputType::INSUFFICIENT:
743             if (testConfig.executor == Executor::FENCED) {
744                 // For Executor::FENCED, the output shape must be fully specified.
745                 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
746                 return;
747             }
748             ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
749             ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
750             // Check that all returned output dimensions are at least as fully specified as the
751             // union of the information about the corresponding operand in the model and in the
752             // request. In this test, all model outputs have known rank with all dimensions
753             // unspecified, and no dimensional information is provided in the request.
754             for (uint32_t i = 0; i < outputShapes.size(); i++) {
755                 ASSERT_EQ(outputShapes[i].isSufficient, i != kInsufficientOutputIndex);
756                 const auto& actual = outputShapes[i].dimensions;
757                 const auto& golden =
758                         testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
759                 ASSERT_EQ(actual.size(), golden.size());
760                 for (uint32_t j = 0; j < actual.size(); j++) {
761                     if (actual[j] == 0) continue;
762                     EXPECT_EQ(actual[j], golden[j]) << "index: " << j;
763                 }
764             }
765             return;
766         case OutputType::MISSED_DEADLINE:
767             ASSERT_TRUE(executionStatus == ErrorStatus::MISSED_DEADLINE_TRANSIENT ||
768                         executionStatus == ErrorStatus::MISSED_DEADLINE_PERSISTENT)
769                     << "executionStatus = " << executionStatus;
770             return;
771     }
772 
773     // Go through all outputs, check returned output shapes.
774     for (uint32_t i = 0; i < outputShapes.size(); i++) {
775         EXPECT_TRUE(outputShapes[i].isSufficient);
776         const auto& expect = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
777         const std::vector<uint32_t> actual = outputShapes[i].dimensions;
778         EXPECT_EQ(expect, actual);
779     }
780 
781     // Retrieve execution results.
782     const std::vector<TestBuffer> outputs = context.getOutputBuffers(testModel, request);
783 
784     // We want "close-enough" results.
785     checkResults(testModel, outputs);
786 }
787 
EvaluatePreparedModel(const sp<IDevice> & device,const sp<IPreparedModel> & preparedModel,const TestModel & testModel,TestKind testKind)788 void EvaluatePreparedModel(const sp<IDevice>& device, const sp<IPreparedModel>& preparedModel,
789                            const TestModel& testModel, TestKind testKind) {
790     std::vector<OutputType> outputTypesList;
791     std::vector<MeasureTiming> measureTimingList;
792     std::vector<Executor> executorList;
793     std::vector<MemoryType> memoryTypeList;
794 
795     switch (testKind) {
796         case TestKind::GENERAL: {
797             outputTypesList = {OutputType::FULLY_SPECIFIED};
798             measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
799             executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
800             memoryTypeList = {MemoryType::ASHMEM};
801         } break;
802         case TestKind::DYNAMIC_SHAPE: {
803             outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT};
804             measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
805             executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST, Executor::FENCED};
806             memoryTypeList = {MemoryType::ASHMEM};
807         } break;
808         case TestKind::MEMORY_DOMAIN: {
809             outputTypesList = {OutputType::FULLY_SPECIFIED};
810             measureTimingList = {MeasureTiming::NO};
811             executorList = {Executor::ASYNC, Executor::SYNC, Executor::FENCED};
812             memoryTypeList = {MemoryType::BLOB_AHWB, MemoryType::DEVICE};
813         } break;
814         case TestKind::FENCED_COMPUTE: {
815             outputTypesList = {OutputType::FULLY_SPECIFIED};
816             measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
817             executorList = {Executor::FENCED};
818             memoryTypeList = {MemoryType::ASHMEM};
819         } break;
820         case TestKind::QUANTIZATION_COUPLING: {
821             LOG(FATAL) << "Wrong TestKind for EvaluatePreparedModel";
822             return;
823         } break;
824         case TestKind::INTINITE_LOOP_TIMEOUT: {
825             outputTypesList = {OutputType::MISSED_DEADLINE};
826             measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
827             // Burst does not support V1_3 loop timeout.
828             executorList = {Executor::ASYNC, Executor::SYNC, Executor::FENCED};
829             memoryTypeList = {MemoryType::ASHMEM};
830         } break;
831     }
832 
833     for (const OutputType outputType : outputTypesList) {
834         for (const MeasureTiming measureTiming : measureTimingList) {
835             for (const Executor executor : executorList) {
836                 for (const MemoryType memoryType : memoryTypeList) {
837                     const TestConfig testConfig(executor, measureTiming, outputType, memoryType);
838                     EvaluatePreparedModel(device, preparedModel, testModel, testConfig);
839                 }
840             }
841         }
842     }
843 }
844 
EvaluatePreparedCoupledModels(const sp<IDevice> & device,const sp<IPreparedModel> & preparedModel,const TestModel & testModel,const sp<IPreparedModel> & preparedCoupledModel,const TestModel & coupledModel)845 void EvaluatePreparedCoupledModels(const sp<IDevice>& device,
846                                    const sp<IPreparedModel>& preparedModel,
847                                    const TestModel& testModel,
848                                    const sp<IPreparedModel>& preparedCoupledModel,
849                                    const TestModel& coupledModel) {
850     const std::vector<OutputType> outputTypesList = {OutputType::FULLY_SPECIFIED};
851     const std::vector<MeasureTiming> measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
852     const std::vector<Executor> executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST,
853                                                 Executor::FENCED};
854 
855     for (const OutputType outputType : outputTypesList) {
856         for (const MeasureTiming measureTiming : measureTimingList) {
857             for (const Executor executor : executorList) {
858                 const TestConfig testConfig(executor, measureTiming, outputType, MemoryType::ASHMEM,
859                                             /*reportSkipping=*/false);
860                 bool baseSkipped = false;
861                 EvaluatePreparedModel(device, preparedModel, testModel, testConfig, &baseSkipped);
862                 bool coupledSkipped = false;
863                 EvaluatePreparedModel(device, preparedCoupledModel, coupledModel, testConfig,
864                                       &coupledSkipped);
865                 ASSERT_EQ(baseSkipped, coupledSkipped);
866                 if (baseSkipped) {
867                     LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
868                                  "execute model that it does not support.";
869                     std::cout << "[          ]   Early termination of test because vendor service "
870                                  "cannot "
871                                  "execute model that it does not support."
872                               << std::endl;
873                     GTEST_SKIP();
874                 }
875             }
876         }
877     }
878 }
879 
Execute(const sp<IDevice> & device,const TestModel & testModel,TestKind testKind)880 void Execute(const sp<IDevice>& device, const TestModel& testModel, TestKind testKind) {
881     Model model = createModel(testModel);
882     if (testKind == TestKind::DYNAMIC_SHAPE) {
883         makeOutputDimensionsUnspecified(&model);
884     }
885 
886     sp<IPreparedModel> preparedModel;
887     switch (testKind) {
888         case TestKind::GENERAL:
889         case TestKind::DYNAMIC_SHAPE:
890         case TestKind::MEMORY_DOMAIN:
891         case TestKind::FENCED_COMPUTE:
892         case TestKind::INTINITE_LOOP_TIMEOUT: {
893             createPreparedModel(device, model, &preparedModel);
894             if (preparedModel == nullptr) return;
895             EvaluatePreparedModel(device, preparedModel, testModel, testKind);
896         } break;
897         case TestKind::QUANTIZATION_COUPLING: {
898             ASSERT_TRUE(testModel.hasQuant8CoupledOperands());
899             createPreparedModel(device, model, &preparedModel,
900                                 /*reportSkipping*/ false);
901             TestModel signedQuantizedModel = convertQuant8AsymmOperandsToSigned(testModel);
902             sp<IPreparedModel> preparedCoupledModel;
903             createPreparedModel(device, createModel(signedQuantizedModel), &preparedCoupledModel,
904                                 /*reportSkipping*/ false);
905             // If we couldn't prepare a model with unsigned quantization, we must
906             // fail to prepare a model with signed quantization as well.
907             if (preparedModel == nullptr) {
908                 ASSERT_EQ(preparedCoupledModel, nullptr);
909                 // If we failed to prepare both of the models, we can safely skip
910                 // the test.
911                 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
912                              "prepare model that it does not support.";
913                 std::cout
914                         << "[          ]   Early termination of test because vendor service cannot "
915                            "prepare model that it does not support."
916                         << std::endl;
917                 GTEST_SKIP();
918             }
919             ASSERT_NE(preparedCoupledModel, nullptr);
920             EvaluatePreparedCoupledModels(device, preparedModel, testModel, preparedCoupledModel,
921                                           signedQuantizedModel);
922         } break;
923     }
924 }
925 
SetUp()926 void GeneratedTestBase::SetUp() {
927     testing::TestWithParam<GeneratedTestParam>::SetUp();
928     ASSERT_NE(kDevice, nullptr);
929     const bool deviceIsResponsive = kDevice->ping().isOk();
930     ASSERT_TRUE(deviceIsResponsive);
931 }
932 
getNamedModels(const FilterFn & filter)933 std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
934     return TestModelManager::get().getTestModels(filter);
935 }
936 
getNamedModels(const FilterNameFn & filter)937 std::vector<NamedModel> getNamedModels(const FilterNameFn& filter) {
938     return TestModelManager::get().getTestModels(filter);
939 }
940 
printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam> & info)941 std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
942     const auto& [namedDevice, namedModel] = info.param;
943     return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
944 }
945 
946 // Tag for the generated tests
947 class GeneratedTest : public GeneratedTestBase {};
948 
949 // Tag for the dynamic output shape tests
950 class DynamicOutputShapeTest : public GeneratedTest {};
951 
952 // Tag for the memory domain tests
953 class MemoryDomainTest : public GeneratedTest {};
954 
955 // Tag for the fenced compute tests
956 class FencedComputeTest : public GeneratedTest {};
957 
958 // Tag for the dynamic output shape tests
959 class QuantizationCouplingTest : public GeneratedTest {};
960 
961 // Tag for the loop timeout tests
962 class InfiniteLoopTimeoutTest : public GeneratedTest {};
963 
TEST_P(GeneratedTest,Test)964 TEST_P(GeneratedTest, Test) {
965     Execute(kDevice, kTestModel, TestKind::GENERAL);
966 }
967 
TEST_P(DynamicOutputShapeTest,Test)968 TEST_P(DynamicOutputShapeTest, Test) {
969     Execute(kDevice, kTestModel, TestKind::DYNAMIC_SHAPE);
970 }
971 
TEST_P(MemoryDomainTest,Test)972 TEST_P(MemoryDomainTest, Test) {
973     Execute(kDevice, kTestModel, TestKind::MEMORY_DOMAIN);
974 }
975 
TEST_P(FencedComputeTest,Test)976 TEST_P(FencedComputeTest, Test) {
977     Execute(kDevice, kTestModel, TestKind::FENCED_COMPUTE);
978 }
979 
TEST_P(QuantizationCouplingTest,Test)980 TEST_P(QuantizationCouplingTest, Test) {
981     Execute(kDevice, kTestModel, TestKind::QUANTIZATION_COUPLING);
982 }
983 
TEST_P(InfiniteLoopTimeoutTest,Test)984 TEST_P(InfiniteLoopTimeoutTest, Test) {
985     Execute(kDevice, kTestModel, TestKind::INTINITE_LOOP_TIMEOUT);
986 }
987 
988 INSTANTIATE_GENERATED_TEST(GeneratedTest,
__anon404ff7050902(const TestModel& testModel) 989                            [](const TestModel& testModel) { return !testModel.expectFailure; });
990 
__anon404ff7050a02(const TestModel& testModel) 991 INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel) {
992     return !testModel.expectFailure && !testModel.hasScalarOutputs();
993 });
994 
995 INSTANTIATE_GENERATED_TEST(MemoryDomainTest,
__anon404ff7050b02(const TestModel& testModel) 996                            [](const TestModel& testModel) { return !testModel.expectFailure; });
997 
998 INSTANTIATE_GENERATED_TEST(FencedComputeTest,
__anon404ff7050c02(const TestModel& testModel) 999                            [](const TestModel& testModel) { return !testModel.expectFailure; });
1000 
__anon404ff7050d02(const TestModel& testModel) 1001 INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
1002     return !testModel.expectFailure && testModel.hasQuant8CoupledOperands() &&
1003            testModel.main.operations.size() == 1;
1004 });
1005 
__anon404ff7050e02(const TestModel& testModel) 1006 INSTANTIATE_GENERATED_TEST(InfiniteLoopTimeoutTest, [](const TestModel& testModel) {
1007     return testModel.isInfiniteLoopTimeoutTest();
1008 });
1009 
1010 }  // namespace android::hardware::neuralnetworks::V1_3::vts::functional
1011