1 /* 2 * Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package jdk.random; 27 28 import java.util.concurrent.atomic.AtomicLong; 29 import java.util.random.RandomGenerator; 30 import jdk.internal.util.random.RandomSupport; 31 import jdk.internal.util.random.RandomSupport.AbstractSplittableWithBrineGenerator; 32 import jdk.internal.util.random.RandomSupport.RandomGeneratorProperties; 33 34 /** 35 * A "splittable" pseudorandom number generator (PRNG) whose period 36 * is roughly 2<sup>384</sup>. Class {@link L128X256MixRandom} implements 37 * interfaces {@link RandomGenerator} and {@link SplittableGenerator}, 38 * and therefore supports methods for producing pseudorandomly chosen 39 * values of type {@code int}, {@code long}, {@code float}, {@code double}, 40 * and {@code boolean} (and for producing streams of pseudorandomly chosen 41 * numbers of type {@code int}, {@code long}, and {@code double}), 42 * as well as methods for creating new split-off {@link L128X256MixRandom} 43 * objects or streams of such objects. 44 * 45 * <p>The {@link L128X256MixRandom} algorithm is a specific member of 46 * the LXM family of algorithms for pseudorandom number generators; 47 * for more information, see the documentation for package 48 * {@link jdk.random}. Each instance of {@link L128X256MixRandom} 49 * has 384 bits of state plus one 128-bit instance-specific parameter. 50 * 51 * <p>If two instances of {@link L128X256MixRandom} are created with 52 * the same seed within the same program execution, and the same 53 * sequence of method calls is made for each, they will generate and 54 * return identical sequences of values. 55 * 56 * <p>As with {@link java.util.SplittableRandom}, instances of 57 * {@link L128X256MixRandom} are <em>not</em> thread-safe. They are 58 * designed to be split, not shared, across threads (see the {@link #split} 59 * method). For example, a {@link java.util.concurrent.ForkJoinTask} 60 * fork/join-style computation using random numbers might include a 61 * construction of the form 62 * {@code new Subtask(someL128X256MixRandom.split()).fork()}. 63 * 64 * <p>This class provides additional methods for generating random 65 * streams, that employ the above techniques when used in 66 * {@code stream.parallel()} mode. 67 * 68 * <p>Instances of {@link L128X256MixRandom} are not cryptographically 69 * secure. Consider instead using {@link java.security.SecureRandom} 70 * in security-sensitive applications. Additionally, 71 * default-constructed instances do not use a cryptographically random 72 * seed unless the {@linkplain System#getProperty system property} 73 * {@code java.util.secureRandomSeed} is set to {@code true}. 74 * 75 * @since 17 76 * 77 */ 78 @RandomGeneratorProperties( 79 name = "L128X256MixRandom", 80 group = "LXM", 81 i = 256, j = 1, k = 128, 82 equidistribution = 1 83 ) 84 public final class L128X256MixRandom extends AbstractSplittableWithBrineGenerator { 85 86 /* 87 * Implementation Overview. 88 * 89 * The 128-bit parameter `a` is represented as two long fields `ah` and `al`. 90 * The 128-bit state variable `s` is represented as two long fields `sh` and `sl`. 91 * 92 * The split operation uses the current generator to choose eight 93 * new 64-bit long values that are then used to initialize the 94 * parameters `ah` and `al` and the state variables `sh`, `sl`, 95 * `x0`, `x1`, `x2`, and `x3` for a newly constructed generator. 96 * 97 * With extremely high probability, no two generators so chosen 98 * will have the same `a` parameter, and testing has indicated 99 * that the values generated by two instances of {@link L128X256MixRandom} 100 * will be (approximately) independent if have different values for `a`. 101 * 102 * The default (no-argument) constructor, in essence, uses 103 * "defaultGen" to generate eight new 64-bit values for the same 104 * purpose. Multiple generators created in this way will certainly 105 * differ in their `a` parameters. The defaultGen state must be accessed 106 * in a thread-safe manner, so we use an AtomicLong to represent 107 * this state. To bootstrap the defaultGen, we start off using a 108 * seed based on current time unless the 109 * java.util.secureRandomSeed property is set. This serves as a 110 * slimmed-down (and insecure) variant of SecureRandom that also 111 * avoids stalls that may occur when using /dev/random. 112 * 113 * File organization: First static fields, then instance 114 * fields, then constructors, then instance methods. 115 */ 116 117 /* ---------------- static fields ---------------- */ 118 119 /** 120 * The seed generator for default constructors. 121 */ 122 private static final AtomicLong defaultGen = new AtomicLong(RandomSupport.initialSeed()); 123 124 /* 125 * The equidistribution of the algorithm. 126 */ 127 private static final int EQUIDISTRIBUTION = 1; 128 129 /* 130 * Low half of multiplier used in the LCG portion of the algorithm; 131 * the overall multiplier is (2**64 + ML). 132 * Chosen based on research by Sebastiano Vigna and Guy Steele (2019). 133 * The spectral scores for dimensions 2 through 8 for the multiplier 0x1d605bbb58c8abbfdLL 134 * are [0.991889, 0.907938, 0.830964, 0.837980, 0.780378, 0.797464, 0.761493]. 135 */ 136 137 private static final long ML = 0xd605bbb58c8abbfdL; 138 139 /* ---------------- instance fields ---------------- */ 140 141 /** 142 * The parameter that is used as an additive constant for the LCG. 143 * Must be odd (therefore al must be odd). 144 */ 145 private final long ah, al; 146 147 /** 148 * The per-instance state: sh and sl for the LCG; x0, x1, x2, and x3 for the XBG. 149 * At least one of the four fields x0, x1, x2, and x3 must be nonzero. 150 */ 151 private long sh, sl, x0, x1, x2, x3; 152 153 /* ---------------- constructors ---------------- */ 154 155 /** 156 * Basic constructor that initializes all fields from parameters. 157 * It then adjusts the field values if necessary to ensure that 158 * all constraints on the values of fields are met. 159 * 160 * @param ah high half of the additive parameter for the LCG 161 * @param al low half of the additive parameter for the LCG 162 * @param sh high half of the initial state for the LCG 163 * @param sl low half of the initial state for the LCG 164 * @param x0 first word of the initial state for the XBG 165 * @param x1 second word of the initial state for the XBG 166 * @param x2 third word of the initial state for the XBG 167 * @param x3 fourth word of the initial state for the XBG 168 */ L128X256MixRandom(long ah, long al, long sh, long sl, long x0, long x1, long x2, long x3)169 public L128X256MixRandom(long ah, long al, long sh, long sl, long x0, long x1, long x2, long x3) { 170 // Force a to be odd. 171 this.ah = ah; 172 this.al = al | 1; 173 this.sh = sh; 174 this.sl = sl; 175 this.x0 = x0; 176 this.x1 = x1; 177 this.x2 = x2; 178 this.x3 = x3; 179 // If x0, x1, x2, and x3 are all zero, we must choose nonzero values. 180 if ((x0 | x1 | x2 | x3) == 0) { 181 long v = sh; 182 // At least three of the four values generated here will be nonzero. 183 this.x0 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64); 184 this.x1 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64); 185 this.x2 = RandomSupport.mixStafford13(v += RandomSupport.GOLDEN_RATIO_64); 186 this.x3 = RandomSupport.mixStafford13(v + RandomSupport.GOLDEN_RATIO_64); 187 } 188 } 189 190 /** 191 * Creates a new instance of {@link L128X256MixRandom} using the 192 * specified {@code long} value as the initial seed. Instances of 193 * {@link L128X256MixRandom} created with the same seed in the same 194 * program generate identical sequences of values. 195 * 196 * @param seed the initial seed 197 */ L128X256MixRandom(long seed)198 public L128X256MixRandom(long seed) { 199 // Using a value with irregularly spaced 1-bits to xor the seed 200 // argument tends to improve "pedestrian" seeds such as 0 or 201 // other small integers. We may as well use SILVER_RATIO_64. 202 // 203 // The seed is hashed by mixMurmur64 to produce the `a` parameter. 204 // The seed is hashed by mixStafford13 to produce the initial `x0`, 205 // which will then be used to produce the first generated value. 206 // The other x values are filled in as if by a SplitMix PRNG with 207 // GOLDEN_RATIO_64 as the gamma value and mixStafford13 as the mixer. 208 this(RandomSupport.mixMurmur64(seed ^= RandomSupport.SILVER_RATIO_64), 209 RandomSupport.mixMurmur64(seed += RandomSupport.GOLDEN_RATIO_64), 210 0, 211 1, 212 RandomSupport.mixStafford13(seed), 213 RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64), 214 RandomSupport.mixStafford13(seed += RandomSupport.GOLDEN_RATIO_64), 215 RandomSupport.mixStafford13(seed + RandomSupport.GOLDEN_RATIO_64)); 216 } 217 218 /** 219 * Creates a new instance of {@link L128X256MixRandom} that is likely to 220 * generate sequences of values that are statistically independent 221 * of those of any other instances in the current program execution, 222 * but may, and typically does, vary across program invocations. 223 */ L128X256MixRandom()224 public L128X256MixRandom() { 225 // Using GOLDEN_RATIO_64 here gives us a good Weyl sequence of values. 226 this(defaultGen.getAndAdd(RandomSupport.GOLDEN_RATIO_64)); 227 } 228 229 /** 230 * Creates a new instance of {@link L128X256MixRandom} using the specified array of 231 * initial seed bytes. Instances of {@link L128X256MixRandom} created with the same 232 * seed array in the same program execution generate identical sequences of values. 233 * 234 * @param seed the initial seed 235 */ L128X256MixRandom(byte[] seed)236 public L128X256MixRandom(byte[] seed) { 237 // Android-changed: backport https://bugs.openjdk.org/browse/JDK-8283083. 238 // Convert the seed to 8 long values, of which the last 4 are not all zero. 239 // long[] data = RandomSupport.convertSeedBytesToLongs(seed, 6, 4); 240 long[] data = RandomSupport.convertSeedBytesToLongs(seed, 8, 4); 241 long ah = data[0], al = data[1], sh = data[2], sl = data[3], 242 x0 = data[4], x1 = data[5], x2 = data[6], x3 = data[7]; 243 // Force a to be odd. 244 this.ah = ah; 245 this.al = al | 1; 246 this.sh = sh; 247 this.sl = sl; 248 this.x0 = x0; 249 this.x1 = x1; 250 this.x2 = x2; 251 this.x3 = x3; 252 } 253 254 /* ---------------- public methods ---------------- */ 255 256 @Override split(SplittableGenerator source, long brine)257 public SplittableGenerator split(SplittableGenerator source, long brine) { 258 // Pick a new instance "at random", but use the brine for (the low half of) `a`. 259 return new L128X256MixRandom(source.nextLong(), brine << 1, 260 source.nextLong(), source.nextLong(), 261 source.nextLong(), source.nextLong(), 262 source.nextLong(), source.nextLong()); 263 } 264 265 @Override nextLong()266 public long nextLong() { 267 // Compute the result based on current state information 268 // (this allows the computation to be overlapped with state update). 269 final long result = RandomSupport.mixLea64(sh + x0); 270 271 // Update the LCG subgenerator 272 // The LCG is, in effect, s = ((1LL << 64) + ML) * s + a, if only we had 128-bit arithmetic. 273 final long u = ML * sl; 274 // Note that Math.multiplyHigh computes the high half of the product of signed values, 275 // but what we need is the high half of the product of unsigned values; for this we use the 276 // formula "unsignedMultiplyHigh(a, b) = multiplyHigh(a, b) + ((a >> 63) & b) + ((b >> 63) & a)"; 277 // in effect, each operand is added to the result iff the sign bit of the other operand is 1. 278 // (See Henry S. Warren, Jr., _Hacker's Delight_ (Second Edition), Addison-Wesley (2013), 279 // Section 8-3, p. 175; or see the First Edition, Addison-Wesley (2003), Section 8-3, p. 133.) 280 // If Math.unsignedMultiplyHigh(long, long) is ever implemented, the following line can become: 281 // sh = (ML * sh) + Math.unsignedMultiplyHigh(ML, sl) + sl + ah; 282 // and this entire comment can be deleted. 283 sh = (ML * sh) + (Math.multiplyHigh(ML, sl) + ((ML >> 63) & sl) + ((sl >> 63) & ML)) + sl + ah; 284 sl = u + al; 285 if (Long.compareUnsigned(sl, u) < 0) ++sh; // Handle the carry propagation from low half to high half. 286 287 // Update the XBG subgenerator 288 long q0 = x0, q1 = x1, q2 = x2, q3 = x3; 289 { // xoshiro256 1.0 290 long t = q1 << 17; 291 q2 ^= q0; 292 q3 ^= q1; 293 q1 ^= q2; 294 q0 ^= q3; 295 q2 ^= t; 296 q3 = Long.rotateLeft(q3, 45); 297 } 298 x0 = q0; x1 = q1; x2 = q2; x3 = q3; 299 300 return result; 301 } 302 303 } 304