1 /*
2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package test.java.lang.StrictMath;
26 
27 /**
28  * A transliteration of the "Freely Distributable Math Library" algorithms from C into Java. That
29  * is, this port of the algorithms is as close to the C originals as possible while still being
30  * readable legal Java.
31  */
32 public class FdlibmTranslit {
33 
FdlibmTranslit()34     private FdlibmTranslit() {
35     }
36 
37     /**
38      * Return the low-order 32 bits of the double argument as an int.
39      */
__LO(double x)40     private static int __LO(double x) {
41         long transducer = Double.doubleToRawLongBits(x);
42         return (int) transducer;
43     }
44 
45     /**
46      * Return a double with its low-order bits of the second argument and the high-order bits of the
47      * first argument..
48      */
__LO(double x, int low)49     private static double __LO(double x, int low) {
50         long transX = Double.doubleToRawLongBits(x);
51         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
52                 (low & 0x0000_0000_FFFF_FFFFL));
53     }
54 
55     /**
56      * Return the high-order 32 bits of the double argument as an int.
57      */
__HI(double x)58     private static int __HI(double x) {
59         long transducer = Double.doubleToRawLongBits(x);
60         return (int) (transducer >> 32);
61     }
62 
63     /**
64      * Return a double with its high-order bits of the second argument and the low-order bits of the
65      * first argument..
66      */
__HI(double x, int high)67     private static double __HI(double x, int high) {
68         long transX = Double.doubleToRawLongBits(x);
69         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
70                 (((long) high)) << 32);
71     }
72 
hypot(double x, double y)73     public static double hypot(double x, double y) {
74         return Hypot.compute(x, y);
75     }
76 
77     /**
78      * cbrt(x) Return cube root of x
79      */
80     public static class Cbrt {
81 
82         // unsigned
83         private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
84         private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
85 
86         private static final double C = 5.42857142857142815906e-01; /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
87         private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
88         private static final double E = 1.41428571428571436819e+00; /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
89         private static final double F = 1.60714285714285720630e+00; /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
90         private static final double G = 3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */
91 
compute(double x)92         public static strictfp double compute(double x) {
93             int hx;
94             double r, s, t = 0.0, w;
95             int sign; // unsigned
96 
97             hx = __HI(x);           // high word of x
98             sign = hx & 0x80000000;             // sign= sign(x)
99             hx ^= sign;
100             if (hx >= 0x7ff00000) {
101                 return (x + x); // cbrt(NaN,INF) is itself
102             }
103             if ((hx | __LO(x)) == 0) {
104                 return (x);          // cbrt(0) is itself
105             }
106 
107             x = __HI(x, hx);   // x <- |x|
108             // rough cbrt to 5 bits
109             if (hx < 0x00100000) {               // subnormal number
110                 t = __HI(t, 0x43500000);          // set t= 2**54
111                 t *= x;
112                 t = __HI(t, __HI(t) / 3 + B2);
113             } else {
114                 t = __HI(t, hx / 3 + B1);
115             }
116 
117             // new cbrt to 23 bits, may be implemented in single precision
118             r = t * t / x;
119             s = C + r * t;
120             t *= G + F / (s + E + D / s);
121 
122             // chopped to 20 bits and make it larger than cbrt(x)
123             t = __LO(t, 0);
124             t = __HI(t, __HI(t) + 0x00000001);
125 
126             // one step newton iteration to 53 bits with error less than 0.667 ulps
127             s = t * t;          // t*t is exact
128             r = x / s;
129             w = t + t;
130             r = (r - t) / (w + r);  // r-s is exact
131             t = t + t * r;
132 
133             // restore the sign bit
134             t = __HI(t, __HI(t) | sign);
135             return (t);
136         }
137     }
138 
139     /**
140      * hypot(x,y)
141      *
142      * Method : If (assume round-to-nearest) z = x*x + y*y has error less than sqrt(2)/2 ulp, than
143      * sqrt(z) has error less than 1 ulp (exercise).
144      *
145      * So, compute sqrt(x*x + y*y) with some care as follows to get the error below 1 ulp:
146      *
147      * Assume x > y > 0; (if possible, set rounding to round-to-nearest) 1. if x > 2y  use x1*x1 +
148      * (y*y + (x2*(x + x1))) for x*x + y*y where x1 = x with lower 32 bits cleared, x2 = x - x1;
149      * else 2. if x <= 2y use t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y)) where t1 = 2x with lower 32
150      * bits cleared, t2 = 2x - t1, y1= y with lower 32 bits chopped, y2 = y - y1.
151      *
152      * NOTE: scaling may be necessary if some argument is too large or too tiny
153      *
154      * Special cases: hypot(x,y) is INF if x or y is +INF or -INF; else hypot(x,y) is NAN if x or y
155      * is NAN.
156      *
157      * Accuracy: hypot(x,y) returns sqrt(x^2 + y^2) with error less than 1 ulps (units in the last
158      * place)
159      */
160     static class Hypot {
161 
compute(double x, double y)162         public static double compute(double x, double y) {
163             double a = x;
164             double b = y;
165             double t1, t2, y1, y2, w;
166             int j, k, ha, hb;
167 
168             ha = __HI(x) & 0x7fffffff;        // high word of  x
169             hb = __HI(y) & 0x7fffffff;        // high word of  y
170             if (hb > ha) {
171                 a = y;
172                 b = x;
173                 j = ha;
174                 ha = hb;
175                 hb = j;
176             } else {
177                 a = x;
178                 b = y;
179             }
180             a = __HI(a, ha);   // a <- |a|
181             b = __HI(b, hb);   // b <- |b|
182             if ((ha - hb) > 0x3c00000) {
183                 return a + b;  // x / y > 2**60
184             }
185             k = 0;
186             if (ha > 0x5f300000) {   // a>2**500
187                 if (ha >= 0x7ff00000) {       // Inf or NaN
188                     w = a + b;                // for sNaN
189                     if (((ha & 0xfffff) | __LO(a)) == 0) {
190                         w = a;
191                     }
192                     if (((hb ^ 0x7ff00000) | __LO(b)) == 0) {
193                         w = b;
194                     }
195                     return w;
196                 }
197                 // scale a and b by 2**-600
198                 ha -= 0x25800000;
199                 hb -= 0x25800000;
200                 k += 600;
201                 a = __HI(a, ha);
202                 b = __HI(b, hb);
203             }
204             if (hb < 0x20b00000) {   // b < 2**-500
205                 if (hb <= 0x000fffff) {      // subnormal b or 0 */
206                     if ((hb | (__LO(b))) == 0) {
207                         return a;
208                     }
209                     t1 = 0;
210                     t1 = __HI(t1, 0x7fd00000);  // t1=2^1022
211                     b *= t1;
212                     a *= t1;
213                     k -= 1022;
214                 } else {            // scale a and b by 2^600
215                     ha += 0x25800000;       // a *= 2^600
216                     hb += 0x25800000;       // b *= 2^600
217                     k -= 600;
218                     a = __HI(a, ha);
219                     b = __HI(b, hb);
220                 }
221             }
222             // medium size a and b
223             w = a - b;
224             if (w > b) {
225                 t1 = 0;
226                 t1 = __HI(t1, ha);
227                 t2 = a - t1;
228                 w = Math.sqrt(t1 * t1 - (b * (-b) - t2 * (a + t1)));
229             } else {
230                 a = a + a;
231                 y1 = 0;
232                 y1 = __HI(y1, hb);
233                 y2 = b - y1;
234                 t1 = 0;
235                 t1 = __HI(t1, ha + 0x00100000);
236                 t2 = a - t1;
237                 w = Math.sqrt(t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b)));
238             }
239             if (k != 0) {
240                 t1 = 1.0;
241                 int t1_hi = __HI(t1);
242                 t1_hi += (k << 20);
243                 t1 = __HI(t1, t1_hi);
244                 return t1 * w;
245             } else {
246                 return w;
247             }
248         }
249     }
250 
251     /**
252      * Returns the exponential of x.
253      *
254      * Method 1. Argument reduction: Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. Given x,
255      * find r and integer k such that
256      *
257      * x = k*ln2 + r,  |r| <= 0.5*ln2.
258      *
259      * Here r will be represented as r = hi-lo for better accuracy.
260      *
261      * 2. Approximation of exp(r) by a special rational function on the interval [0,0.34658]: Write
262      * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... We use a special Reme
263      * algorithm on [0,0.34658] to generate a polynomial of degree 5 to approximate R. The maximum
264      * error of this polynomial approximation is bounded by 2**-59. In other words, R(z) ~ 2.0 +
265      * P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 (where z=r*r, and the values of P1 to P5 are
266      * listed below) and |                  5          |     -59 | 2.0+P1*z+...+P5*z   -  R(z) | <=
267      * 2 |                             | The computation of exp(r) thus becomes 2*r exp(r) = 1 +
268      * ------- R - r r*R1(r) = 1 + r + ----------- (for better accuracy) 2 - R1(r) where 2       4
269      * 10 R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
270      *
271      * 3. Scale back to obtain exp(x): From step 1, we have exp(x) = 2^k * exp(r)
272      *
273      * Special cases: exp(INF) is INF, exp(NaN) is NaN; exp(-INF) is 0, and for finite argument,
274      * only exp(0)=1 is exact.
275      *
276      * Accuracy: according to an error analysis, the error is always less than 1 ulp (unit in the
277      * last place).
278      *
279      * Misc. info. For IEEE double if x >  7.09782712893383973096e+02 then exp(x) overflow if x <
280      * -7.45133219101941108420e+02 then exp(x) underflow
281      *
282      * Constants: The hexadecimal values are the intended ones for the following constants. The
283      * decimal values may be used, provided that the compiler will convert from decimal to binary
284      * accurately enough to produce the hexadecimal values shown.
285      */
286     static class Exp {
287 
288         private static final double ONE = 1.0;
289         private static final double[] HAL_F = {0.5, -0.5,};
290         private static final double HUGE = 1.0e+300;
291         private static final double TWOM_1000 = 9.33263618503218878990e-302;      /* 2**-1000=0x01700000,0*/
292         private static final double O_THRESHOLD = 7.09782712893383973096e+02;   /* 0x40862E42, 0xFEFA39EF */
293         private static final double U_THRESHOLD = -7.45133219101941108420e+02;   /* 0xc0874910, 0xD52D3051 */
294         private static final double[] LN_2_HI = {6.93147180369123816490e-01,
295                 /* 0x3fe62e42, 0xfee00000 */
296                 -6.93147180369123816490e-01};  /* 0xbfe62e42, 0xfee00000 */
297         private static final double[] LN_2_LO = {1.90821492927058770002e-10,
298                 /* 0x3dea39ef, 0x35793c76 */
299                 -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
300         private static final double INV_LN_2 = 1.44269504088896338700e+00;       /* 0x3ff71547, 0x652b82fe */
301         private static final double P1 = 1.66666666666666019037e-01;         /* 0x3FC55555, 0x5555553E */
302         private static final double P2 = -2.77777777770155933842e-03;         /* 0xBF66C16C, 0x16BEBD93 */
303         private static final double P3 = 6.61375632143793436117e-05;         /* 0x3F11566A, 0xAF25DE2C */
304         private static final double P4 = -1.65339022054652515390e-06;         /* 0xBEBBBD41, 0xC5D26BF1 */
305         private static final double P5 = 4.13813679705723846039e-08;         /* 0x3E663769, 0x72BEA4D0 */
306 
compute(double x)307         public static strictfp double compute(double x) {
308             double y, hi = 0, lo = 0, c, t;
309             int k = 0, xsb;
310             /*unsigned*/
311             int hx;
312 
313             hx = __HI(x);  /* high word of x */
314             xsb = (hx >> 31) & 1;               /* sign bit of x */
315             hx &= 0x7fffffff;               /* high word of |x| */
316 
317             /* filter out non-finite argument */
318             if (hx >= 0x40862E42) {                  /* if |x|>=709.78... */
319                 if (hx >= 0x7ff00000) {
320                     if (((hx & 0xfffff) | __LO(x)) != 0) {
321                         return x + x;                /* NaN */
322                     } else {
323                         return (xsb == 0) ? x : 0.0;    /* exp(+-inf)={inf,0} */
324                     }
325                 }
326                 if (x > O_THRESHOLD) {
327                     return HUGE * HUGE; /* overflow */
328                 }
329                 if (x < U_THRESHOLD) {
330                     return TWOM_1000 * TWOM_1000; /* underflow */
331                 }
332             }
333 
334             /* argument reduction */
335             if (hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
336                 if (hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
337                     hi = x - LN_2_HI[xsb];
338                     lo = LN_2_LO[xsb];
339                     k = 1 - xsb - xsb;
340                 } else {
341                     k = (int) (INV_LN_2 * x + HAL_F[xsb]);
342                     t = k;
343                     hi = x - t * LN_2_HI[0];    /* t*ln2HI is exact here */
344                     lo = t * LN_2_LO[0];
345                 }
346                 x = hi - lo;
347             } else if (hx < 0x3e300000) {     /* when |x|<2**-28 */
348                 if (HUGE + x > ONE) {
349                     return ONE + x;/* trigger inexact */
350                 }
351             } else {
352                 k = 0;
353             }
354 
355             /* x is now in primary range */
356             t = x * x;
357             c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
358             if (k == 0) {
359                 return ONE - ((x * c) / (c - 2.0) - x);
360             } else {
361                 y = ONE - ((lo - (x * c) / (2.0 - c)) - hi);
362             }
363             if (k >= -1021) {
364                 y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */
365                 return y;
366             } else {
367                 y = __HI(y, __HI(y) + ((k + 1000) << 20));/* add k to y's exponent */
368                 return y * TWOM_1000;
369             }
370         }
371     }
372 }
373