1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "Select.h"
20 
21 #include "IndexedShapeWrapper.h"
22 #include "OperationResolver.h"
23 #include "OperationsExecutionUtils.h"
24 
25 namespace android {
26 namespace nn {
27 namespace select_op {
28 namespace {
29 
30 template <typename T>
compute(const bool8 * conditionData,const Shape & conditionShape,const T * aData,const Shape & aShape,const T * bData,const Shape & bShape,T * outputData,const Shape & outputShape)31 bool compute(const bool8* conditionData, const Shape& conditionShape, const T* aData,
32              const Shape& aShape, const T* bData, const Shape& bShape, T* outputData,
33              const Shape& outputShape) {
34     // The code assumes that condition has the same shape as all other tensors.
35     // This should be checked during preparation stage.
36     uint32_t size = getNumberOfElements(conditionShape);
37     for (uint32_t i = 0; i < size; ++i) {
38         T a = aData[i];
39         T b = bData[i];
40 
41         if constexpr (std::is_same_v<T, uint8_t> || std::is_same_v<T, int8_t>) {
42             a = requantize<T>(a, aShape, outputShape);
43             b = requantize<T>(b, bShape, outputShape);
44         }
45         outputData[i] = conditionData[i] ? a : b;
46     }
47     return true;
48 }
49 
50 template <typename T>
executeTyped(IOperationExecutionContext * context)51 bool executeTyped(IOperationExecutionContext* context) {
52     return compute<T>(
53             context->getInputBuffer<bool8>(kInputCondition),
54             context->getInputShape(kInputCondition), context->getInputBuffer<T>(kInputTensor1),
55             context->getInputShape(kInputTensor1), context->getInputBuffer<T>(kInputTensor2),
56             context->getInputShape(kInputTensor2), context->getOutputBuffer<T>(kOutputTensor),
57             context->getOutputShape(kOutputTensor));
58 }
59 
60 }  // namespace
61 
prepare(IOperationExecutionContext * context)62 bool prepare(IOperationExecutionContext* context) {
63     Shape inputCondition = context->getInputShape(kInputCondition);
64     Shape input1 = context->getInputShape(kInputTensor1);
65     if (inputCondition.dimensions.size() != input1.dimensions.size()) {
66         LOG(ERROR) << "Condition and input tensor dimensions are not equal";
67         return false;
68     }
69     for (size_t i = 0; i < inputCondition.dimensions.size(); ++i) {
70         if (inputCondition.dimensions[i] != input1.dimensions[i]) {
71             LOG(ERROR) << "Condition and input tensor dimensions are not equal";
72             return false;
73         }
74     }
75 
76     Shape input2 = context->getInputShape(kInputTensor2);
77     NN_RET_CHECK(SameShape(input1, input2));
78 
79     Shape output = context->getOutputShape(kOutputTensor);
80     NN_RET_CHECK(SetShape(input1, &output));
81     return context->setOutputShape(kOutputTensor, output);
82 }
83 
execute(IOperationExecutionContext * context)84 bool execute(IOperationExecutionContext* context) {
85     switch (context->getInputType(kInputTensor1)) {
86         case OperandType::TENSOR_FLOAT16:
87             return executeTyped<_Float16>(context);
88         case OperandType::TENSOR_FLOAT32:
89             return executeTyped<float>(context);
90         case OperandType::TENSOR_INT32:
91             return executeTyped<int32_t>(context);
92         case OperandType::TENSOR_QUANT8_ASYMM:
93             return executeTyped<uint8_t>(context);
94         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
95             return executeTyped<int8_t>(context);
96         default:
97             NN_RET_CHECK_FAIL() << "Unsupported tensor type for SELECT op.";
98     }
99 }
100 
101 }  // namespace select_op
102 
103 NN_REGISTER_OPERATION_DEFAULT_VALIDATION(SELECT, select_op::prepare, select_op::execute);
104 
105 }  // namespace nn
106 }  // namespace android
107