1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <HalInterfaces.h>
18 #include <ValidateHal.h>
19 #include <gtest/gtest.h>
20
21 #include <vector>
22
23 #include "FibonacciDriver.h"
24 #include "FibonacciExtension.h"
25 #include "HalUtils.h"
26 #include "Manager.h"
27 #include "NeuralNetworks.h"
28 #include "NeuralNetworksExtensions.h"
29 #include "NeuralNetworksWrapperExtensions.h"
30 #include "TestNeuralNetworksWrapper.h"
31 #include "TypeManager.h"
32
33 namespace android {
34 namespace nn {
35 namespace {
36
37 using ::android::nn::test_wrapper::ExtensionModel;
38 using ::android::nn::test_wrapper::ExtensionOperandParams;
39 using ::android::nn::test_wrapper::ExtensionOperandType;
40 using ::android::nn::test_wrapper::Type;
41
42 class FibonacciExtensionTest : public ::testing::Test {
43 protected:
SetUp()44 virtual void SetUp() {
45 if (DeviceManager::get()->getUseCpuOnly()) {
46 // This test requires the use a custom driver.
47 GTEST_SKIP();
48 }
49
50 // Real world extension tests should run against actual hardware
51 // implementations, but there is no hardware supporting the test
52 // extension. Hence the sample software driver.
53 DeviceManager::get()->forTest_registerDevice(makeSharedDevice(
54 sample_driver::FibonacciDriver::kDriverName, new sample_driver::FibonacciDriver()));
55 // Discover extensions provided by registered devices.
56 TypeManager::get()->forTest_reset();
57
58 uint32_t numDevices = 0;
59 ASSERT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
60 for (uint32_t i = 0; i < numDevices; i++) {
61 ANeuralNetworksDevice* device = nullptr;
62 EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR);
63 mAllDevices.push_back(device);
64 bool supportsFibonacciExtension;
65 ASSERT_EQ(
66 ANeuralNetworksDevice_getExtensionSupport(
67 device, EXAMPLE_FIBONACCI_EXTENSION_NAME, &supportsFibonacciExtension),
68 ANEURALNETWORKS_NO_ERROR);
69 if (supportsFibonacciExtension) {
70 ASSERT_EQ(mFibonacciDevice, nullptr) << "Found multiple Fibonacci drivers";
71 mFibonacciDevice = device;
72 } else if (DeviceManager::get()->forTest_isCpuDevice(device)) {
73 ASSERT_EQ(mCpuDevice, nullptr) << "Found multiple CPU drivers";
74 mCpuDevice = device;
75 }
76 }
77 ASSERT_NE(mFibonacciDevice, nullptr) << "Expecting Fibonacci driver to be available";
78 ASSERT_NE(mCpuDevice, nullptr) << "Expecting CPU driver to be available";
79 mDevices = {mFibonacciDevice, mCpuDevice};
80 }
81
TearDown()82 virtual void TearDown() {
83 if (mExecution) {
84 ANeuralNetworksExecution_free(mExecution);
85 }
86 if (mCompilation) {
87 ANeuralNetworksCompilation_free(mCompilation);
88 }
89 DeviceManager::get()->forTest_reInitializeDeviceList();
90 TypeManager::get()->forTest_reset();
91 }
92
checkSupportedOperations(const std::vector<bool> & expected,const std::vector<ANeuralNetworksDevice * > devices)93 void checkSupportedOperations(const std::vector<bool>& expected,
94 const std::vector<ANeuralNetworksDevice*> devices) {
95 const uint32_t kMaxNumberOperations = 256;
96 EXPECT_LE(expected.size(), kMaxNumberOperations);
97 bool supported[kMaxNumberOperations] = {false};
98 EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(
99 mModel.getHandle(), devices.data(), devices.size(), supported),
100 ANEURALNETWORKS_NO_ERROR);
101 for (size_t i = 0; i < expected.size(); ++i) {
102 SCOPED_TRACE(::testing::Message() << "i = " << i);
103 EXPECT_EQ(supported[i], expected[i]);
104 }
105 }
106
checkSupportedOperations(const std::vector<bool> & expected)107 void checkSupportedOperations(const std::vector<bool>& expected) {
108 checkSupportedOperations(expected, mDevices);
109 }
110
prepareForExecution()111 void prepareForExecution() {
112 ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), mDevices.data(),
113 mDevices.size(), &mCompilation),
114 ANEURALNETWORKS_NO_ERROR);
115 ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR);
116 ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &mExecution),
117 ANEURALNETWORKS_NO_ERROR);
118 }
119
120 ANeuralNetworksDevice* mFibonacciDevice = nullptr;
121 ANeuralNetworksDevice* mCpuDevice = nullptr;
122 std::vector<ANeuralNetworksDevice*> mDevices; // Fibonacci and CPU devices.
123 std::vector<ANeuralNetworksDevice*> mAllDevices;
124 ANeuralNetworksExecution* mExecution = nullptr;
125 ANeuralNetworksCompilation* mCompilation = nullptr;
126 ExtensionModel mModel;
127 };
128
addNopOperation(ExtensionModel * model,ExtensionOperandType inputType,uint32_t input,uint32_t output)129 void addNopOperation(ExtensionModel* model, ExtensionOperandType inputType, uint32_t input,
130 uint32_t output) {
131 // Our NOP operation is ADD, which has no extension type support.
132 ASSERT_EQ(inputType.operandType.type, ANEURALNETWORKS_TENSOR_FLOAT32);
133 ASSERT_EQ(inputType.dimensions.size(), 1u);
134
135 uint32_t inputZeros = model->addOperand(&inputType);
136 uint32_t inputSize = inputType.dimensions[0];
137 uint32_t inputLength = sizeof(float) * inputSize;
138 const float kZeros[100] = {};
139 ASSERT_GE(sizeof(kZeros), inputLength);
140 model->setOperandValue(inputZeros, &kZeros, inputLength);
141
142 ExtensionOperandType scalarType(Type::INT32, {});
143 uint32_t activation = model->addOperand(&scalarType);
144 int32_t kNoActivation = ANEURALNETWORKS_FUSED_NONE;
145 model->setOperandValue(activation, &kNoActivation, sizeof(kNoActivation));
146
147 model->addOperation(ANEURALNETWORKS_ADD, {input, inputZeros, activation}, {output});
148 }
149
createModel(ExtensionModel * model,ExtensionOperandType inputType,ExtensionOperandType outputType,bool addNopOperations)150 void createModel(ExtensionModel* model, ExtensionOperandType inputType,
151 ExtensionOperandType outputType, bool addNopOperations) {
152 uint32_t fibonacciInput = model->addOperand(&inputType);
153 uint32_t fibonacciOutput = model->addOperand(&outputType);
154
155 uint32_t modelInput = addNopOperations ? model->addOperand(&inputType) : fibonacciInput;
156 uint32_t modelOutput = addNopOperations ? model->addOperand(&outputType) : fibonacciOutput;
157
158 if (addNopOperations) {
159 addNopOperation(model, inputType, modelInput, fibonacciInput);
160 }
161 model->addOperation(
162 model->getExtensionOperationType(EXAMPLE_FIBONACCI_EXTENSION_NAME, EXAMPLE_FIBONACCI),
163 {fibonacciInput}, {fibonacciOutput});
164 if (addNopOperations) {
165 addNopOperation(model, outputType, fibonacciOutput, modelOutput);
166 }
167
168 model->identifyInputsAndOutputs({modelInput}, {modelOutput});
169 model->finish();
170 ASSERT_TRUE(model->isValid());
171 }
172
TEST_F(FibonacciExtensionTest,ModelWithExtensionOperandTypes)173 TEST_F(FibonacciExtensionTest, ModelWithExtensionOperandTypes) {
174 constexpr uint32_t N = 10;
175 constexpr double scale = 0.5;
176 constexpr int64_t zeroPoint = 10;
177
178 ExtensionOperandType inputType(static_cast<Type>(mModel.getExtensionOperandType(
179 EXAMPLE_FIBONACCI_EXTENSION_NAME, EXAMPLE_INT64)),
180 {});
181 ExtensionOperandType outputType(
182 static_cast<Type>(mModel.getExtensionOperandType(EXAMPLE_FIBONACCI_EXTENSION_NAME,
183 EXAMPLE_TENSOR_QUANT64_ASYMM)),
184 {N},
185 ExtensionOperandParams(ExampleQuant64AsymmParams{
186 .scale = scale,
187 .zeroPoint = zeroPoint,
188 }));
189 createModel(&mModel, inputType, outputType, /*addNopOperations=*/false);
190 checkSupportedOperations({true});
191 prepareForExecution();
192
193 int64_t input = N;
194 EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, &input, sizeof(input)),
195 ANEURALNETWORKS_NO_ERROR);
196
197 int64_t output[N] = {};
198 EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, &output, sizeof(output)),
199 ANEURALNETWORKS_NO_ERROR);
200
201 ASSERT_EQ(ANeuralNetworksExecution_compute(mExecution), ANEURALNETWORKS_NO_ERROR);
202
203 EXPECT_EQ(output[0], 1 / scale + zeroPoint);
204 EXPECT_EQ(output[1], 1 / scale + zeroPoint);
205 EXPECT_EQ(output[2], 2 / scale + zeroPoint);
206 EXPECT_EQ(output[3], 3 / scale + zeroPoint);
207 EXPECT_EQ(output[4], 5 / scale + zeroPoint);
208 EXPECT_EQ(output[5], 8 / scale + zeroPoint);
209 EXPECT_EQ(output[6], 13 / scale + zeroPoint);
210 EXPECT_EQ(output[7], 21 / scale + zeroPoint);
211 EXPECT_EQ(output[8], 34 / scale + zeroPoint);
212 EXPECT_EQ(output[9], 55 / scale + zeroPoint);
213 }
214
TEST_F(FibonacciExtensionTest,ModelWithTemporaries)215 TEST_F(FibonacciExtensionTest, ModelWithTemporaries) {
216 constexpr uint32_t N = 10;
217
218 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
219 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {N});
220 createModel(&mModel, inputType, outputType, /*addNopOperations=*/true);
221 checkSupportedOperations({true, true, true});
222 prepareForExecution();
223
224 float input[] = {N};
225 EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, &input, sizeof(input)),
226 ANEURALNETWORKS_NO_ERROR);
227
228 float output[N] = {};
229 EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, &output, sizeof(output)),
230 ANEURALNETWORKS_NO_ERROR);
231
232 ASSERT_EQ(ANeuralNetworksExecution_compute(mExecution), ANEURALNETWORKS_NO_ERROR);
233
234 EXPECT_EQ(output[0], 1);
235 EXPECT_EQ(output[1], 1);
236 EXPECT_EQ(output[2], 2);
237 EXPECT_EQ(output[3], 3);
238 EXPECT_EQ(output[4], 5);
239 EXPECT_EQ(output[5], 8);
240 EXPECT_EQ(output[6], 13);
241 EXPECT_EQ(output[7], 21);
242 EXPECT_EQ(output[8], 34);
243 EXPECT_EQ(output[9], 55);
244 }
245
TEST_F(FibonacciExtensionTest,InvalidInputType)246 TEST_F(FibonacciExtensionTest, InvalidInputType) {
247 ExtensionOperandType inputType(Type::TENSOR_INT32, {1}); // Unsupported type.
248 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {1});
249 createModel(&mModel, inputType, outputType, /*addNopOperations=*/false);
250 checkSupportedOperations({false}); // The driver reports that it doesn't support the operation.
251 ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), mDevices.data(),
252 mDevices.size(), &mCompilation),
253 ANEURALNETWORKS_NO_ERROR);
254 ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_DATA);
255 }
256
TEST_F(FibonacciExtensionTest,InvalidOutputType)257 TEST_F(FibonacciExtensionTest, InvalidOutputType) {
258 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
259 ExtensionOperandType outputType(Type::TENSOR_INT32, {1}); // Unsupported type.
260 createModel(&mModel, inputType, outputType, /*addNopOperations=*/false);
261 checkSupportedOperations({false}); // The driver reports that it doesn't support the operation.
262 ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), mDevices.data(),
263 mDevices.size(), &mCompilation),
264 ANEURALNETWORKS_NO_ERROR);
265 ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_DATA);
266 }
267
TEST_F(FibonacciExtensionTest,InvalidInputValue)268 TEST_F(FibonacciExtensionTest, InvalidInputValue) {
269 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
270 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {1});
271 createModel(&mModel, inputType, outputType, /*addNopOperations=*/false);
272 checkSupportedOperations({true});
273 prepareForExecution();
274
275 float input[] = {-1}; // Invalid input value.
276 EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, &input, sizeof(input)),
277 ANEURALNETWORKS_NO_ERROR);
278
279 float output[1] = {};
280 EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, &output, sizeof(output)),
281 ANEURALNETWORKS_NO_ERROR);
282
283 ASSERT_EQ(ANeuralNetworksExecution_compute(mExecution), ANEURALNETWORKS_OP_FAILED);
284 }
285
TEST_F(FibonacciExtensionTest,InvalidNumInputs)286 TEST_F(FibonacciExtensionTest, InvalidNumInputs) {
287 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
288 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {1});
289 uint32_t input1 = mModel.addOperand(&inputType);
290 uint32_t input2 = mModel.addOperand(&inputType); // Extra input.
291 uint32_t output = mModel.addOperand(&outputType);
292 mModel.addOperation(
293 mModel.getExtensionOperationType(EXAMPLE_FIBONACCI_EXTENSION_NAME, EXAMPLE_FIBONACCI),
294 {input1, input2}, {output});
295 mModel.identifyInputsAndOutputs({input1, input2}, {output});
296 mModel.finish();
297 ASSERT_TRUE(mModel.isValid());
298 checkSupportedOperations({false});
299 ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), mDevices.data(),
300 mDevices.size(), &mCompilation),
301 ANEURALNETWORKS_NO_ERROR);
302 ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_DATA);
303 }
304
TEST_F(FibonacciExtensionTest,InvalidNumOutputs)305 TEST_F(FibonacciExtensionTest, InvalidNumOutputs) {
306 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
307 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {1});
308 uint32_t input = mModel.addOperand(&inputType);
309 uint32_t output1 = mModel.addOperand(&outputType);
310 uint32_t output2 = mModel.addOperand(&outputType); // Extra output.
311 mModel.addOperation(
312 mModel.getExtensionOperationType(EXAMPLE_FIBONACCI_EXTENSION_NAME, EXAMPLE_FIBONACCI),
313 {input}, {output1, output2});
314 mModel.identifyInputsAndOutputs({input}, {output1, output2});
315 mModel.finish();
316 ASSERT_TRUE(mModel.isValid());
317 checkSupportedOperations({false});
318 ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), mDevices.data(),
319 mDevices.size(), &mCompilation),
320 ANEURALNETWORKS_NO_ERROR);
321 ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_DATA);
322 }
323
TEST_F(FibonacciExtensionTest,InvalidOperation)324 TEST_F(FibonacciExtensionTest, InvalidOperation) {
325 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
326 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {1});
327 uint32_t input = mModel.addOperand(&inputType);
328 uint32_t output = mModel.addOperand(&outputType);
329 mModel.addOperation(mModel.getExtensionOperationType(
330 EXAMPLE_FIBONACCI_EXTENSION_NAME,
331 EXAMPLE_FIBONACCI + 1), // This operation should not exist.
332 {input}, {output});
333 mModel.identifyInputsAndOutputs({input}, {output});
334 mModel.finish();
335 ASSERT_TRUE(mModel.isValid());
336 checkSupportedOperations({false});
337 ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), mDevices.data(),
338 mDevices.size(), &mCompilation),
339 ANEURALNETWORKS_NO_ERROR);
340 ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_DATA);
341 }
342
TEST_F(FibonacciExtensionTest,GetSupportedOperations)343 TEST_F(FibonacciExtensionTest, GetSupportedOperations) {
344 ExtensionOperandType inputType(Type::TENSOR_FLOAT32, {1});
345 ExtensionOperandType outputType(Type::TENSOR_FLOAT32, {1});
346 createModel(&mModel, inputType, outputType, /*addNopOperations=*/false);
347
348 for (ANeuralNetworksDevice* device : mAllDevices) {
349 const char* name = nullptr;
350 ASSERT_EQ(ANeuralNetworksDevice_getName(device, &name), ANEURALNETWORKS_NO_ERROR);
351 SCOPED_TRACE(::testing::Message() << "device = " << name);
352 // Only Fibonacci device should support Fibonacci operation.
353 checkSupportedOperations({device == mFibonacciDevice}, {device});
354 }
355 }
356
357 } // namespace
358 } // namespace nn
359 } // namespace android
360