1# model 2model = Model() 3sparseData = Input("sparseData", "TENSOR_FLOAT32", "{4}") 4traversalOrder = Parameter("traversalOrder", "TENSOR_INT32", "{4}", [0, 1, 2, 3]) 5blockMap = Parameter("blockMap", "TENSOR_INT32", "{2}", [0, 1]) 6dimFormat = Parameter("dimFormat", "TENSOR_INT32", "{4}", [0, 0, 1, 1]) 7dimensions = Parameter("dimensions", "TENSOR_INT32", "{4}", [2, 3, 5, 7]) 8d0ArrSegments = Parameter("d0ArrSegments", "TENSOR_INT32", "{0}", []) 9d0ArrIndices = Parameter("d0ArrIndices", "TENSOR_INT32", "{0}", []) 10d1ArrSegments = Parameter("d1ArrSegments", "TENSOR_INT32", "{0}", []) 11d1ArrIndices = Parameter("d1ArrIndices", "TENSOR_INT32", "{0}", []) 12d2ArrSegments = Parameter("d2ArrSegments", "TENSOR_INT32", "{7}", [0, 1, 2, 3, 4, 4, 4]) 13d2ArrIndices = Parameter("d2ArrIndices", "TENSOR_INT32", "{4}", [1, 2, 3, 1]) 14d3ArrSegments = Parameter("d3ArrSegments", "TENSOR_INT32", "{5}", [0, 1, 2, 3, 4]) 15d3ArrIndices = Parameter("d3ArrIndices", "TENSOR_INT32", "{4}", [1, 2, 3, 3]) 16denseOut = Output("denseOut", "TENSOR_FLOAT32", "{10, 21}") 17model = model.Operation("DENSIFY", sparseData, traversalOrder, blockMap, 18 dimFormat, dimensions, d0ArrSegments, d0ArrIndices, d1ArrSegments, 19 d1ArrIndices, d2ArrSegments, d2ArrIndices, d3ArrSegments, 20 d3ArrIndices).To(denseOut) 21 22# Example 1. Input in operand 0, 23input0 = {sparseData: # input 0 24 [11.0, 13.0, 17.0, 19.0]} 25 26outputData = [0.0] * 210 27outputData[22] = 11.0 28outputData[51] = 13.0 29outputData[80] = 17.0 30outputData[129] = 19.0 31output0 = {denseOut: # output 0 32 outputData} 33 34quant8_symm = DataTypeConverter().Identify({ 35 sparseData: ("TENSOR_QUANT8_SYMM", 3.0), 36 denseOut: ("TENSOR_QUANT8_SYMM", 3.0) 37}) 38 39quant8_asymm = DataTypeConverter().Identify({ 40 sparseData: ("TENSOR_QUANT8_ASYMM", 2.25, 3), 41 denseOut: ("TENSOR_QUANT8_ASYMM", 2.25, 3) 42}) 43 44quant8_asymm_signed = DataTypeConverter().Identify({ 45 sparseData: ("TENSOR_QUANT8_ASYMM_SIGNED", 2.875, -4), 46 denseOut: ("TENSOR_QUANT8_ASYMM_SIGNED", 2.875, -4) 47}) 48 49quant16_symm = DataTypeConverter().Identify({ 50 sparseData: ("TENSOR_QUANT16_SYMM", 3.25), 51 denseOut: ("TENSOR_QUANT16_SYMM", 3.25) 52}) 53 54quant16_asymm = DataTypeConverter().Identify({ 55 sparseData: ("TENSOR_QUANT16_ASYMM", 6.0, 14), 56 denseOut: ("TENSOR_QUANT16_ASYMM", 6.0, 14) 57}) 58 59# Instantiate an example 60Example((input0, output0)).AddVariations("relaxed", "float16", "int32", quant8_symm, 61 quant8_asymm, quant8_asymm_signed, quant16_symm, 62 quant16_asymm) 63