1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "RenderTopView.h"
18
19 #include "VideoTex.h"
20 #include "glError.h"
21 #include "shader.h"
22 #include "shader_projectedTex.h"
23 #include "shader_simpleTex.h"
24
25 #include <aidl/android/hardware/automotive/evs/Stream.h>
26 #include <android-base/logging.h>
27 #include <math/mat4.h>
28 #include <math/vec3.h>
29
30 namespace {
31
32 using aidl::android::hardware::automotive::evs::BufferDesc;
33 using aidl::android::hardware::automotive::evs::IEvsEnumerator;
34 using aidl::android::hardware::automotive::evs::Stream;
35
36 // Simple aliases to make geometric math using vectors more readable
37 const unsigned X = 0;
38 const unsigned Y = 1;
39 const unsigned Z = 2;
40
41 // Since we assume no roll in these views, we can simplify the required math
unitVectorFromPitchAndYaw(float pitch,float yaw)42 android::vec3 unitVectorFromPitchAndYaw(float pitch, float yaw) {
43 float sinPitch, cosPitch;
44 sincosf(pitch, &sinPitch, &cosPitch);
45 float sinYaw, cosYaw;
46 sincosf(yaw, &sinYaw, &cosYaw);
47 return android::vec3(cosPitch * -sinYaw, cosPitch * cosYaw, sinPitch);
48 }
49
50 // Helper function to set up a perspective matrix with independent horizontal and vertical
51 // angles of view.
perspective(float hfov,float vfov,float near,float far)52 android::mat4 perspective(float hfov, float vfov, float near, float far) {
53 const float tanHalfFovX = tanf(hfov * 0.5f);
54 const float tanHalfFovY = tanf(vfov * 0.5f);
55
56 android::mat4 p(0.0f);
57 p[0][0] = 1.0f / tanHalfFovX;
58 p[1][1] = 1.0f / tanHalfFovY;
59 p[2][2] = -(far + near) / (far - near);
60 p[2][3] = -1.0f;
61 p[3][2] = -(2.0f * far * near) / (far - near);
62 return p;
63 }
64
65 // Helper function to set up a view matrix for a camera given it's yaw & pitch & location
66 // Yes, with a bit of work, we could use lookAt, but it does a lot of extra work
67 // internally that we can short cut.
cameraLookMatrix(const ConfigManager::CameraInfo & cam)68 android::mat4 cameraLookMatrix(const ConfigManager::CameraInfo& cam) {
69 float sinYaw, cosYaw;
70 sincosf(cam.yaw, &sinYaw, &cosYaw);
71
72 // Construct principal unit vectors
73 android::vec3 vAt = unitVectorFromPitchAndYaw(cam.pitch, cam.yaw);
74 android::vec3 vRt = android::vec3(cosYaw, sinYaw, 0.0f);
75 android::vec3 vUp = -cross(vAt, vRt);
76 android::vec3 eye = android::vec3(cam.position[X], cam.position[Y], cam.position[Z]);
77
78 android::mat4 Result(1.0f);
79 Result[0][0] = vRt.x;
80 Result[1][0] = vRt.y;
81 Result[2][0] = vRt.z;
82 Result[0][1] = vUp.x;
83 Result[1][1] = vUp.y;
84 Result[2][1] = vUp.z;
85 Result[0][2] = -vAt.x;
86 Result[1][2] = -vAt.y;
87 Result[2][2] = -vAt.z;
88 Result[3][0] = -dot(vRt, eye);
89 Result[3][1] = -dot(vUp, eye);
90 Result[3][2] = dot(vAt, eye);
91 return Result;
92 }
93
94 } // namespace
95
RenderTopView(std::shared_ptr<IEvsEnumerator> enumerator,const std::vector<ConfigManager::CameraInfo> & camList,const ConfigManager & mConfig)96 RenderTopView::RenderTopView(std::shared_ptr<IEvsEnumerator> enumerator,
97 const std::vector<ConfigManager::CameraInfo>& camList,
98 const ConfigManager& mConfig) :
99 mEnumerator(enumerator), mConfig(mConfig) {
100 // Copy the list of cameras we're to employ into our local storage. We'll create and
101 // associate a streaming video texture when we are activated.
102 mActiveCameras.reserve(camList.size());
103 for (unsigned i = 0; i < camList.size(); i++) {
104 mActiveCameras.emplace_back(camList[i]);
105 }
106 }
107
activate()108 bool RenderTopView::activate() {
109 // Ensure GL is ready to go...
110 if (!prepareGL()) {
111 LOG(ERROR) << "Error initializing GL";
112 return false;
113 }
114
115 // Load our shader programs
116 mPgmAssets.simpleTexture =
117 buildShaderProgram(vtxShader_simpleTexture, pixShader_simpleTexture, "simpleTexture");
118 if (!mPgmAssets.simpleTexture) {
119 LOG(ERROR) << "Failed to build shader program";
120 return false;
121 }
122 mPgmAssets.projectedTexture =
123 buildShaderProgram(vtxShader_projectedTexture, pixShader_projectedTexture,
124 "projectedTexture");
125 if (!mPgmAssets.projectedTexture) {
126 LOG(ERROR) << "Failed to build shader program";
127 return false;
128 }
129
130 // Load the checkerboard text image
131 mTexAssets.checkerBoard.reset(
132 createTextureFromPng("/system/etc/automotive/evs/LabeledChecker.png"));
133 if (!mTexAssets.checkerBoard) {
134 LOG(ERROR) << "Failed to load checkerboard texture";
135 return false;
136 }
137
138 // Load the car image
139 mTexAssets.carTopView.reset(createTextureFromPng("/system/etc/automotive/evs/CarFromTop.png"));
140 if (!mTexAssets.carTopView) {
141 LOG(ERROR) << "Failed to load carTopView texture";
142 return false;
143 }
144
145 // Set up streaming video textures for our associated cameras
146 for (auto&& cam : mActiveCameras) {
147 // We are passing an empty stream configuration; this will make EVS
148 // choose the default stream configuration.
149 std::unique_ptr<Stream> emptyCfg(new Stream());
150 cam.tex.reset(createVideoTexture(mEnumerator, cam.info.cameraId.c_str(),
151 std::move(emptyCfg), sDisplay));
152 if (!cam.tex) {
153 LOG(ERROR) << "Failed to set up video texture for " << cam.info.cameraId << " ("
154 << cam.info.function << ")";
155 return false;
156 }
157 }
158
159 return true;
160 }
161
deactivate()162 void RenderTopView::deactivate() {
163 // Release our video textures
164 // We can't hold onto it because some other Render object might need the same camera
165 for (auto&& cam : mActiveCameras) {
166 cam.tex = nullptr;
167 }
168 }
169
drawFrame(const BufferDesc & tgtBuffer)170 bool RenderTopView::drawFrame(const BufferDesc& tgtBuffer) {
171 // Tell GL to render to the given buffer
172 if (!attachRenderTarget(tgtBuffer)) {
173 LOG(ERROR) << "Failed to attached render target";
174 return false;
175 }
176
177 // Set up our top down projection matrix from car space (world units, Xfwd, Yright, Zup)
178 // to view space (-1 to 1)
179 const float top = mConfig.getDisplayTopLocation();
180 const float bottom = mConfig.getDisplayBottomLocation();
181 const float right = mConfig.getDisplayRightLocation(sAspectRatio);
182 const float left = mConfig.getDisplayLeftLocation(sAspectRatio);
183
184 const float near = 10.0f; // arbitrary top of view volume
185 const float far = 0.0f; // ground plane is at zero
186
187 // We can use a simple, unrotated ortho view since the screen and car space axis are
188 // naturally aligned in the top down view.
189 orthoMatrix = android::mat4::ortho(left, right, top, bottom, near, far);
190
191 // Refresh our video texture contents. We do it all at once in hopes of getting
192 // better coherence among images. This does not guarantee synchronization, of course...
193 for (auto&& cam : mActiveCameras) {
194 if (cam.tex) {
195 cam.tex->refresh();
196 }
197 }
198
199 // Iterate over all the cameras and project their images onto the ground plane
200 for (auto&& cam : mActiveCameras) {
201 renderCameraOntoGroundPlane(cam);
202 }
203
204 // Draw the car image
205 renderCarTopView();
206
207 // Now that everythign is submitted, release our hold on the texture resource
208 detachRenderTarget();
209
210 // Wait for the rendering to finish
211 glFinish();
212 detachRenderTarget();
213 return true;
214 }
215
216 //
217 // Responsible for drawing the car's self image in the top down view.
218 // Draws in car model space (units of meters with origin at center of rear axel)
219 // NOTE: We probably want to eventually switch to using a VertexArray based model system.
220 //
renderCarTopView()221 void RenderTopView::renderCarTopView() {
222 // Compute the corners of our image footprint in car space
223 const float carLengthInTexels = mConfig.carGraphicRearPixel() - mConfig.carGraphicFrontPixel();
224 const float carSpaceUnitsPerTexel = mConfig.getCarLength() / carLengthInTexels;
225 const float textureHeightInCarSpace = mTexAssets.carTopView->height() * carSpaceUnitsPerTexel;
226 const float textureAspectRatio =
227 (float)mTexAssets.carTopView->width() / mTexAssets.carTopView->height();
228 const float pixelsBehindCarInImage =
229 mTexAssets.carTopView->height() - mConfig.carGraphicRearPixel();
230 const float textureExtentBehindCarInCarSpace = pixelsBehindCarInImage * carSpaceUnitsPerTexel;
231
232 const float btCS = mConfig.getRearLocation() - textureExtentBehindCarInCarSpace;
233 const float tpCS = textureHeightInCarSpace + btCS;
234 const float ltCS = 0.5f * textureHeightInCarSpace * textureAspectRatio;
235 const float rtCS = -ltCS;
236
237 GLfloat vertsCarPos[] = {
238 ltCS, tpCS, 0.0f, // left top in car space
239 rtCS, tpCS, 0.0f, // right top
240 ltCS, btCS, 0.0f, // left bottom
241 rtCS, btCS, 0.0f // right bottom
242 };
243 // NOTE: We didn't flip the image in the texture, so V=0 is actually the top of the image
244 GLfloat vertsCarTex[] = {
245 0.0f, 0.0f, // left top
246 1.0f, 0.0f, // right top
247 0.0f, 1.0f, // left bottom
248 1.0f, 1.0f // right bottom
249 };
250 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vertsCarPos);
251 glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, vertsCarTex);
252 glEnableVertexAttribArray(0);
253 glEnableVertexAttribArray(1);
254
255 glEnable(GL_BLEND);
256 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
257
258 glUseProgram(mPgmAssets.simpleTexture);
259 GLint loc = glGetUniformLocation(mPgmAssets.simpleTexture, "cameraMat");
260 glUniformMatrix4fv(loc, 1, false, orthoMatrix.asArray());
261 glBindTexture(GL_TEXTURE_2D, mTexAssets.carTopView->glId());
262
263 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
264
265 glDisable(GL_BLEND);
266
267 glDisableVertexAttribArray(0);
268 glDisableVertexAttribArray(1);
269 }
270
271 // NOTE: Might be worth reviewing the ideas at
272 // http://math.stackexchange.com/questions/1691895/inverse-of-perspective-matrix
273 // to see if that simplifies the math, although we'll still want to compute the actual ground
274 // interception points taking into account the pitchLimit as below.
renderCameraOntoGroundPlane(const ActiveCamera & cam)275 void RenderTopView::renderCameraOntoGroundPlane(const ActiveCamera& cam) {
276 // How far is the farthest any camera should even consider projecting it's image?
277 const float visibleSizeV = mConfig.getDisplayTopLocation() - mConfig.getDisplayBottomLocation();
278 const float visibleSizeH = visibleSizeV * sAspectRatio;
279 const float maxRange = (visibleSizeH > visibleSizeV) ? visibleSizeH : visibleSizeV;
280
281 // Construct the projection matrix (View + Projection) associated with this sensor
282 const android::mat4 V = cameraLookMatrix(cam.info);
283 const android::mat4 P =
284 perspective(cam.info.hfov, cam.info.vfov, cam.info.position[Z], maxRange);
285 const android::mat4 projectionMatix = P * V;
286
287 // Just draw the whole darn ground plane for now -- we're wasting fill rate, but so what?
288 // A 2x optimization would be to draw only the 1/2 space of the window in the direction
289 // the sensor is facing. A more complex solution would be to construct the intersection
290 // of the sensor volume with the ground plane and render only that geometry.
291 const float top = mConfig.getDisplayTopLocation();
292 const float bottom = mConfig.getDisplayBottomLocation();
293 const float wsHeight = top - bottom;
294 const float wsWidth = wsHeight * sAspectRatio;
295 const float right = wsWidth * 0.5f;
296 const float left = -right;
297
298 const android::vec3 topLeft(left, top, 0.0f);
299 const android::vec3 topRight(right, top, 0.0f);
300 const android::vec3 botLeft(left, bottom, 0.0f);
301 const android::vec3 botRight(right, bottom, 0.0f);
302
303 GLfloat vertsPos[] = {
304 topLeft[X], topLeft[Y], topLeft[Z], topRight[X], topRight[Y], topRight[Z],
305 botLeft[X], botLeft[Y], botLeft[Z], botRight[X], botRight[Y], botRight[Z],
306 };
307 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vertsPos);
308 glEnableVertexAttribArray(0);
309
310 glDisable(GL_BLEND);
311
312 glUseProgram(mPgmAssets.projectedTexture);
313 GLint locCam = glGetUniformLocation(mPgmAssets.projectedTexture, "cameraMat");
314 glUniformMatrix4fv(locCam, 1, false, orthoMatrix.asArray());
315 GLint locProj = glGetUniformLocation(mPgmAssets.projectedTexture, "projectionMat");
316 glUniformMatrix4fv(locProj, 1, false, projectionMatix.asArray());
317
318 GLuint texId;
319 if (cam.tex) {
320 texId = cam.tex->glId();
321 } else {
322 texId = mTexAssets.checkerBoard->glId();
323 }
324 glBindTexture(GL_TEXTURE_2D, texId);
325
326 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
327
328 glDisableVertexAttribArray(0);
329 }
330