1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19
20 #include <assert.h>
21 #include <utils/AndroidThreads.h>
22 #include <utils/Thread.h>
23
24 #if !defined(_WIN32)
25 # include <sys/resource.h>
26 #else
27 # include <windows.h>
28 # include <stdint.h>
29 # include <process.h>
30 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
31 #endif
32
33 #if defined(__linux__)
34 #include <sys/prctl.h>
35 #endif
36
37 #include <log/log.h>
38
39 #if defined(__ANDROID__)
40 #include <processgroup/processgroup.h>
41 #include <processgroup/sched_policy.h>
42 #endif
43
44 #if defined(__ANDROID__)
45 # define __android_unused
46 #else
47 # define __android_unused __attribute__((__unused__))
48 #endif
49
50 /*
51 * ===========================================================================
52 * Thread wrappers
53 * ===========================================================================
54 */
55
56 using namespace android;
57
58 // ----------------------------------------------------------------------------
59 #if !defined(_WIN32)
60 // ----------------------------------------------------------------------------
61
62 /*
63 * Create and run a new thread.
64 *
65 * We create it "detached", so it cleans up after itself.
66 */
67
68 typedef void* (*android_pthread_entry)(void*);
69
70 #if defined(__ANDROID__)
71 struct thread_data_t {
72 thread_func_t entryFunction;
73 void* userData;
74 int priority;
75 char * threadName;
76
77 // we use this trampoline when we need to set the priority with
78 // nice/setpriority, and name with prctl.
trampolinethread_data_t79 static int trampoline(const thread_data_t* t) {
80 thread_func_t f = t->entryFunction;
81 void* u = t->userData;
82 int prio = t->priority;
83 char * name = t->threadName;
84 delete t;
85 setpriority(PRIO_PROCESS, 0, prio);
86
87 if (name) {
88 androidSetThreadName(name);
89 free(name);
90 }
91 return f(u);
92 }
93 };
94 #endif
95
androidSetThreadName(const char * name)96 void androidSetThreadName(const char* name) {
97 #if defined(__linux__)
98 // Mac OS doesn't have this, and we build libutil for the host too
99 int hasAt = 0;
100 int hasDot = 0;
101 const char *s = name;
102 while (*s) {
103 if (*s == '.') hasDot = 1;
104 else if (*s == '@') hasAt = 1;
105 s++;
106 }
107 int len = s - name;
108 if (len < 15 || hasAt || !hasDot) {
109 s = name;
110 } else {
111 s = name + len - 15;
112 }
113 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
114 #endif
115 }
116
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)117 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
118 void *userData,
119 const char* threadName __android_unused,
120 int32_t threadPriority,
121 size_t threadStackSize,
122 android_thread_id_t *threadId)
123 {
124 pthread_attr_t attr;
125 pthread_attr_init(&attr);
126 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
127
128 #if defined(__ANDROID__) /* valgrind is rejecting RT-priority create reqs */
129 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
130 // Now that the pthread_t has a method to find the associated
131 // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
132 // this trampoline in some cases as the parent could set the properties
133 // for the child. However, there would be a race condition because the
134 // child becomes ready immediately, and it doesn't work for the name.
135 // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
136 // proposed but not yet accepted.
137 thread_data_t* t = new thread_data_t;
138 t->priority = threadPriority;
139 t->threadName = threadName ? strdup(threadName) : NULL;
140 t->entryFunction = entryFunction;
141 t->userData = userData;
142 entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
143 userData = t;
144 }
145 #endif
146
147 if (threadStackSize) {
148 pthread_attr_setstacksize(&attr, threadStackSize);
149 }
150
151 errno = 0;
152 pthread_t thread;
153 int result = pthread_create(&thread, &attr,
154 (android_pthread_entry)entryFunction, userData);
155 pthread_attr_destroy(&attr);
156 if (result != 0) {
157 ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n"
158 "(android threadPriority=%d)",
159 entryFunction, result, strerror(errno), threadPriority);
160 return 0;
161 }
162
163 // Note that *threadID is directly available to the parent only, as it is
164 // assigned after the child starts. Use memory barrier / lock if the child
165 // or other threads also need access.
166 if (threadId != nullptr) {
167 *threadId = (android_thread_id_t)thread; // XXX: this is not portable
168 }
169 return 1;
170 }
171
172 #if defined(__ANDROID__)
android_thread_id_t_to_pthread(android_thread_id_t thread)173 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
174 {
175 return (pthread_t) thread;
176 }
177 #endif
178
androidGetThreadId()179 android_thread_id_t androidGetThreadId()
180 {
181 return (android_thread_id_t)pthread_self();
182 }
183
184 // ----------------------------------------------------------------------------
185 #else // !defined(_WIN32)
186 // ----------------------------------------------------------------------------
187
188 /*
189 * Trampoline to make us __stdcall-compliant.
190 *
191 * We're expected to delete "vDetails" when we're done.
192 */
193 struct threadDetails {
194 int (*func)(void*);
195 void* arg;
196 };
threadIntermediary(void * vDetails)197 static __stdcall unsigned int threadIntermediary(void* vDetails)
198 {
199 struct threadDetails* pDetails = (struct threadDetails*) vDetails;
200 int result;
201
202 result = (*(pDetails->func))(pDetails->arg);
203
204 delete pDetails;
205
206 ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
207 return (unsigned int) result;
208 }
209
210 /*
211 * Create and run a new thread.
212 */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)213 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
214 {
215 HANDLE hThread;
216 struct threadDetails* pDetails = new threadDetails; // must be on heap
217 unsigned int thrdaddr;
218
219 pDetails->func = fn;
220 pDetails->arg = arg;
221
222 #if defined(HAVE__BEGINTHREADEX)
223 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
224 &thrdaddr);
225 if (hThread == 0)
226 #elif defined(HAVE_CREATETHREAD)
227 hThread = CreateThread(NULL, 0,
228 (LPTHREAD_START_ROUTINE) threadIntermediary,
229 (void*) pDetails, 0, (DWORD*) &thrdaddr);
230 if (hThread == NULL)
231 #endif
232 {
233 ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
234 return false;
235 }
236
237 #if defined(HAVE_CREATETHREAD)
238 /* close the management handle */
239 CloseHandle(hThread);
240 #endif
241
242 if (id != NULL) {
243 *id = (android_thread_id_t)thrdaddr;
244 }
245
246 return true;
247 }
248
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)249 int androidCreateRawThreadEtc(android_thread_func_t fn,
250 void *userData,
251 const char* /*threadName*/,
252 int32_t /*threadPriority*/,
253 size_t /*threadStackSize*/,
254 android_thread_id_t *threadId)
255 {
256 return doCreateThread( fn, userData, threadId);
257 }
258
androidGetThreadId()259 android_thread_id_t androidGetThreadId()
260 {
261 return (android_thread_id_t)GetCurrentThreadId();
262 }
263
264 // ----------------------------------------------------------------------------
265 #endif // !defined(_WIN32)
266
267 // ----------------------------------------------------------------------------
268
androidCreateThread(android_thread_func_t fn,void * arg)269 int androidCreateThread(android_thread_func_t fn, void* arg)
270 {
271 return createThreadEtc(fn, arg);
272 }
273
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)274 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
275 {
276 return createThreadEtc(fn, arg, "android:unnamed_thread",
277 PRIORITY_DEFAULT, 0, id);
278 }
279
280 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
281
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)282 int androidCreateThreadEtc(android_thread_func_t entryFunction,
283 void *userData,
284 const char* threadName,
285 int32_t threadPriority,
286 size_t threadStackSize,
287 android_thread_id_t *threadId)
288 {
289 return gCreateThreadFn(entryFunction, userData, threadName,
290 threadPriority, threadStackSize, threadId);
291 }
292
androidSetCreateThreadFunc(android_create_thread_fn func)293 void androidSetCreateThreadFunc(android_create_thread_fn func)
294 {
295 gCreateThreadFn = func;
296 }
297
298 #if defined(__ANDROID__)
androidSetThreadPriority(pid_t tid,int pri)299 int androidSetThreadPriority(pid_t tid, int pri)
300 {
301 int rc = 0;
302 int curr_pri = getpriority(PRIO_PROCESS, tid);
303
304 if (curr_pri == pri) {
305 return rc;
306 }
307
308 if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
309 rc = INVALID_OPERATION;
310 } else {
311 errno = 0;
312 }
313
314 return rc;
315 }
316
androidGetThreadPriority(pid_t tid)317 int androidGetThreadPriority(pid_t tid) {
318 return getpriority(PRIO_PROCESS, tid);
319 }
320
321 #endif
322
323 namespace android {
324
325 /*
326 * ===========================================================================
327 * Mutex class
328 * ===========================================================================
329 */
330
331 #if !defined(_WIN32)
332 // implemented as inlines in threads.h
333 #else
334
335 Mutex::Mutex()
336 {
337 HANDLE hMutex;
338
339 assert(sizeof(hMutex) == sizeof(mState));
340
341 hMutex = CreateMutex(NULL, FALSE, NULL);
342 mState = (void*) hMutex;
343 }
344
345 Mutex::Mutex(const char* /*name*/)
346 {
347 // XXX: name not used for now
348 HANDLE hMutex;
349
350 assert(sizeof(hMutex) == sizeof(mState));
351
352 hMutex = CreateMutex(NULL, FALSE, NULL);
353 mState = (void*) hMutex;
354 }
355
356 Mutex::Mutex(int /*type*/, const char* /*name*/)
357 {
358 // XXX: type and name not used for now
359 HANDLE hMutex;
360
361 assert(sizeof(hMutex) == sizeof(mState));
362
363 hMutex = CreateMutex(NULL, FALSE, NULL);
364 mState = (void*) hMutex;
365 }
366
367 Mutex::~Mutex()
368 {
369 CloseHandle((HANDLE) mState);
370 }
371
372 status_t Mutex::lock()
373 {
374 DWORD dwWaitResult;
375 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
376 return dwWaitResult != WAIT_OBJECT_0 ? -1 : OK;
377 }
378
379 void Mutex::unlock()
380 {
381 if (!ReleaseMutex((HANDLE) mState))
382 ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
383 }
384
385 status_t Mutex::tryLock()
386 {
387 DWORD dwWaitResult;
388
389 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
390 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
391 ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
392 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
393 }
394
395 #endif // !defined(_WIN32)
396
397
398 /*
399 * ===========================================================================
400 * Condition class
401 * ===========================================================================
402 */
403
404 #if !defined(_WIN32)
405 // implemented as inlines in threads.h
406 #else
407
408 /*
409 * Windows doesn't have a condition variable solution. It's possible
410 * to create one, but it's easy to get it wrong. For a discussion, and
411 * the origin of this implementation, see:
412 *
413 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
414 *
415 * The implementation shown on the page does NOT follow POSIX semantics.
416 * As an optimization they require acquiring the external mutex before
417 * calling signal() and broadcast(), whereas POSIX only requires grabbing
418 * it before calling wait(). The implementation here has been un-optimized
419 * to have the correct behavior.
420 */
421 typedef struct WinCondition {
422 // Number of waiting threads.
423 int waitersCount;
424
425 // Serialize access to waitersCount.
426 CRITICAL_SECTION waitersCountLock;
427
428 // Semaphore used to queue up threads waiting for the condition to
429 // become signaled.
430 HANDLE sema;
431
432 // An auto-reset event used by the broadcast/signal thread to wait
433 // for all the waiting thread(s) to wake up and be released from
434 // the semaphore.
435 HANDLE waitersDone;
436
437 // This mutex wouldn't be necessary if we required that the caller
438 // lock the external mutex before calling signal() and broadcast().
439 // I'm trying to mimic pthread semantics though.
440 HANDLE internalMutex;
441
442 // Keeps track of whether we were broadcasting or signaling. This
443 // allows us to optimize the code if we're just signaling.
444 bool wasBroadcast;
445
446 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
447 {
448 // Increment the wait count, avoiding race conditions.
449 EnterCriticalSection(&condState->waitersCountLock);
450 condState->waitersCount++;
451 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
452 // condState->waitersCount, getThreadId());
453 LeaveCriticalSection(&condState->waitersCountLock);
454
455 DWORD timeout = INFINITE;
456 if (abstime) {
457 nsecs_t reltime = *abstime - systemTime();
458 if (reltime < 0)
459 reltime = 0;
460 timeout = reltime/1000000;
461 }
462
463 // Atomically release the external mutex and wait on the semaphore.
464 DWORD res =
465 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
466
467 //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
468
469 // Reacquire lock to avoid race conditions.
470 EnterCriticalSection(&condState->waitersCountLock);
471
472 // No longer waiting.
473 condState->waitersCount--;
474
475 // Check to see if we're the last waiter after a broadcast.
476 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
477
478 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
479 // lastWaiter, condState->wasBroadcast, condState->waitersCount);
480
481 LeaveCriticalSection(&condState->waitersCountLock);
482
483 // If we're the last waiter thread during this particular broadcast
484 // then signal broadcast() that we're all awake. It'll drop the
485 // internal mutex.
486 if (lastWaiter) {
487 // Atomically signal the "waitersDone" event and wait until we
488 // can acquire the internal mutex. We want to do this in one step
489 // because it ensures that everybody is in the mutex FIFO before
490 // any thread has a chance to run. Without it, another thread
491 // could wake up, do work, and hop back in ahead of us.
492 SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
493 INFINITE, FALSE);
494 } else {
495 // Grab the internal mutex.
496 WaitForSingleObject(condState->internalMutex, INFINITE);
497 }
498
499 // Release the internal and grab the external.
500 ReleaseMutex(condState->internalMutex);
501 WaitForSingleObject(hMutex, INFINITE);
502
503 return res == WAIT_OBJECT_0 ? OK : -1;
504 }
505 } WinCondition;
506
507 /*
508 * Constructor. Set up the WinCondition stuff.
509 */
510 Condition::Condition()
511 {
512 WinCondition* condState = new WinCondition;
513
514 condState->waitersCount = 0;
515 condState->wasBroadcast = false;
516 // semaphore: no security, initial value of 0
517 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
518 InitializeCriticalSection(&condState->waitersCountLock);
519 // auto-reset event, not signaled initially
520 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
521 // used so we don't have to lock external mutex on signal/broadcast
522 condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
523
524 mState = condState;
525 }
526
527 /*
528 * Destructor. Free Windows resources as well as our allocated storage.
529 */
530 Condition::~Condition()
531 {
532 WinCondition* condState = (WinCondition*) mState;
533 if (condState != NULL) {
534 CloseHandle(condState->sema);
535 CloseHandle(condState->waitersDone);
536 delete condState;
537 }
538 }
539
540
541 status_t Condition::wait(Mutex& mutex)
542 {
543 WinCondition* condState = (WinCondition*) mState;
544 HANDLE hMutex = (HANDLE) mutex.mState;
545
546 return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
547 }
548
549 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
550 {
551 WinCondition* condState = (WinCondition*) mState;
552 HANDLE hMutex = (HANDLE) mutex.mState;
553 nsecs_t absTime = systemTime()+reltime;
554
555 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
556 }
557
558 /*
559 * Signal the condition variable, allowing one thread to continue.
560 */
561 void Condition::signal()
562 {
563 WinCondition* condState = (WinCondition*) mState;
564
565 // Lock the internal mutex. This ensures that we don't clash with
566 // broadcast().
567 WaitForSingleObject(condState->internalMutex, INFINITE);
568
569 EnterCriticalSection(&condState->waitersCountLock);
570 bool haveWaiters = (condState->waitersCount > 0);
571 LeaveCriticalSection(&condState->waitersCountLock);
572
573 // If no waiters, then this is a no-op. Otherwise, knock the semaphore
574 // down a notch.
575 if (haveWaiters)
576 ReleaseSemaphore(condState->sema, 1, 0);
577
578 // Release internal mutex.
579 ReleaseMutex(condState->internalMutex);
580 }
581
582 /*
583 * Signal the condition variable, allowing all threads to continue.
584 *
585 * First we have to wake up all threads waiting on the semaphore, then
586 * we wait until all of the threads have actually been woken before
587 * releasing the internal mutex. This ensures that all threads are woken.
588 */
589 void Condition::broadcast()
590 {
591 WinCondition* condState = (WinCondition*) mState;
592
593 // Lock the internal mutex. This keeps the guys we're waking up
594 // from getting too far.
595 WaitForSingleObject(condState->internalMutex, INFINITE);
596
597 EnterCriticalSection(&condState->waitersCountLock);
598 bool haveWaiters = false;
599
600 if (condState->waitersCount > 0) {
601 haveWaiters = true;
602 condState->wasBroadcast = true;
603 }
604
605 if (haveWaiters) {
606 // Wake up all the waiters.
607 ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
608
609 LeaveCriticalSection(&condState->waitersCountLock);
610
611 // Wait for all awakened threads to acquire the counting semaphore.
612 // The last guy who was waiting sets this.
613 WaitForSingleObject(condState->waitersDone, INFINITE);
614
615 // Reset wasBroadcast. (No crit section needed because nobody
616 // else can wake up to poke at it.)
617 condState->wasBroadcast = 0;
618 } else {
619 // nothing to do
620 LeaveCriticalSection(&condState->waitersCountLock);
621 }
622
623 // Release internal mutex.
624 ReleaseMutex(condState->internalMutex);
625 }
626
627 #endif // !defined(_WIN32)
628
629 // ----------------------------------------------------------------------------
630
631 /*
632 * This is our thread object!
633 */
634
Thread(bool canCallJava)635 Thread::Thread(bool canCallJava)
636 : mCanCallJava(canCallJava),
637 mThread(thread_id_t(-1)),
638 mLock("Thread::mLock"),
639 mStatus(OK),
640 mExitPending(false),
641 mRunning(false)
642 #if defined(__ANDROID__)
643 ,
644 mTid(-1)
645 #endif
646 {
647 }
648
~Thread()649 Thread::~Thread()
650 {
651 }
652
readyToRun()653 status_t Thread::readyToRun()
654 {
655 return OK;
656 }
657
run(const char * name,int32_t priority,size_t stack)658 status_t Thread::run(const char* name, int32_t priority, size_t stack)
659 {
660 LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");
661
662 Mutex::Autolock _l(mLock);
663
664 if (mRunning) {
665 // thread already started
666 return INVALID_OPERATION;
667 }
668
669 // reset status and exitPending to their default value, so we can
670 // try again after an error happened (either below, or in readyToRun())
671 mStatus = OK;
672 mExitPending = false;
673 mThread = thread_id_t(-1);
674
675 // hold a strong reference on ourself
676 mHoldSelf = sp<Thread>::fromExisting(this);
677
678 mRunning = true;
679
680 bool res;
681 if (mCanCallJava) {
682 res = createThreadEtc(_threadLoop,
683 this, name, priority, stack, &mThread);
684 } else {
685 res = androidCreateRawThreadEtc(_threadLoop,
686 this, name, priority, stack, &mThread);
687 }
688
689 if (res == false) {
690 mStatus = UNKNOWN_ERROR; // something happened!
691 mRunning = false;
692 mThread = thread_id_t(-1);
693 mHoldSelf.clear(); // "this" may have gone away after this.
694
695 return UNKNOWN_ERROR;
696 }
697
698 // Do not refer to mStatus here: The thread is already running (may, in fact
699 // already have exited with a valid mStatus result). The OK indication
700 // here merely indicates successfully starting the thread and does not
701 // imply successful termination/execution.
702 return OK;
703
704 // Exiting scope of mLock is a memory barrier and allows new thread to run
705 }
706
_threadLoop(void * user)707 int Thread::_threadLoop(void* user)
708 {
709 Thread* const self = static_cast<Thread*>(user);
710
711 sp<Thread> strong(self->mHoldSelf);
712 wp<Thread> weak(strong);
713 self->mHoldSelf.clear();
714
715 #if defined(__ANDROID__)
716 // this is very useful for debugging with gdb
717 self->mTid = gettid();
718 #endif
719
720 bool first = true;
721
722 do {
723 bool result;
724 if (first) {
725 first = false;
726 self->mStatus = self->readyToRun();
727 result = (self->mStatus == OK);
728
729 if (result && !self->exitPending()) {
730 // Binder threads (and maybe others) rely on threadLoop
731 // running at least once after a successful ::readyToRun()
732 // (unless, of course, the thread has already been asked to exit
733 // at that point).
734 // This is because threads are essentially used like this:
735 // (new ThreadSubclass())->run();
736 // The caller therefore does not retain a strong reference to
737 // the thread and the thread would simply disappear after the
738 // successful ::readyToRun() call instead of entering the
739 // threadLoop at least once.
740 result = self->threadLoop();
741 }
742 } else {
743 result = self->threadLoop();
744 }
745
746 // establish a scope for mLock
747 {
748 Mutex::Autolock _l(self->mLock);
749 if (result == false || self->mExitPending) {
750 self->mExitPending = true;
751 self->mRunning = false;
752 // clear thread ID so that requestExitAndWait() does not exit if
753 // called by a new thread using the same thread ID as this one.
754 self->mThread = thread_id_t(-1);
755 // note that interested observers blocked in requestExitAndWait are
756 // awoken by broadcast, but blocked on mLock until break exits scope
757 self->mThreadExitedCondition.broadcast();
758 break;
759 }
760 }
761
762 // Release our strong reference, to let a chance to the thread
763 // to die a peaceful death.
764 strong.clear();
765 // And immediately, re-acquire a strong reference for the next loop
766 strong = weak.promote();
767 } while(strong != nullptr);
768
769 return 0;
770 }
771
requestExit()772 void Thread::requestExit()
773 {
774 Mutex::Autolock _l(mLock);
775 mExitPending = true;
776 }
777
requestExitAndWait()778 status_t Thread::requestExitAndWait()
779 {
780 Mutex::Autolock _l(mLock);
781 if (mThread == getThreadId()) {
782 ALOGW(
783 "Thread (this=%p): don't call waitForExit() from this "
784 "Thread object's thread. It's a guaranteed deadlock!",
785 this);
786
787 return WOULD_BLOCK;
788 }
789
790 mExitPending = true;
791
792 while (mRunning == true) {
793 mThreadExitedCondition.wait(mLock);
794 }
795 // This next line is probably not needed any more, but is being left for
796 // historical reference. Note that each interested party will clear flag.
797 mExitPending = false;
798
799 return mStatus;
800 }
801
join()802 status_t Thread::join()
803 {
804 Mutex::Autolock _l(mLock);
805 if (mThread == getThreadId()) {
806 ALOGW(
807 "Thread (this=%p): don't call join() from this "
808 "Thread object's thread. It's a guaranteed deadlock!",
809 this);
810
811 return WOULD_BLOCK;
812 }
813
814 while (mRunning == true) {
815 mThreadExitedCondition.wait(mLock);
816 }
817
818 return mStatus;
819 }
820
isRunning() const821 bool Thread::isRunning() const {
822 Mutex::Autolock _l(mLock);
823 return mRunning;
824 }
825
826 #if defined(__ANDROID__)
getTid() const827 pid_t Thread::getTid() const
828 {
829 // mTid is not defined until the child initializes it, and the caller may need it earlier
830 Mutex::Autolock _l(mLock);
831 pid_t tid;
832 if (mRunning) {
833 pthread_t pthread = android_thread_id_t_to_pthread(mThread);
834 tid = pthread_gettid_np(pthread);
835 } else {
836 ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
837 tid = -1;
838 }
839 return tid;
840 }
841 #endif
842
exitPending() const843 bool Thread::exitPending() const
844 {
845 Mutex::Autolock _l(mLock);
846 return mExitPending;
847 }
848
849
850
851 }; // namespace android
852