1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19 
20 #include <assert.h>
21 #include <utils/AndroidThreads.h>
22 #include <utils/Thread.h>
23 
24 #if !defined(_WIN32)
25 # include <sys/resource.h>
26 #else
27 # include <windows.h>
28 # include <stdint.h>
29 # include <process.h>
30 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
31 #endif
32 
33 #if defined(__linux__)
34 #include <sys/prctl.h>
35 #endif
36 
37 #include <log/log.h>
38 
39 #if defined(__ANDROID__)
40 #include <processgroup/processgroup.h>
41 #include <processgroup/sched_policy.h>
42 #endif
43 
44 #if defined(__ANDROID__)
45 # define __android_unused
46 #else
47 # define __android_unused __attribute__((__unused__))
48 #endif
49 
50 /*
51  * ===========================================================================
52  *      Thread wrappers
53  * ===========================================================================
54  */
55 
56 using namespace android;
57 
58 // ----------------------------------------------------------------------------
59 #if !defined(_WIN32)
60 // ----------------------------------------------------------------------------
61 
62 /*
63  * Create and run a new thread.
64  *
65  * We create it "detached", so it cleans up after itself.
66  */
67 
68 typedef void* (*android_pthread_entry)(void*);
69 
70 #if defined(__ANDROID__)
71 struct thread_data_t {
72     thread_func_t   entryFunction;
73     void*           userData;
74     int             priority;
75     char *          threadName;
76 
77     // we use this trampoline when we need to set the priority with
78     // nice/setpriority, and name with prctl.
trampolinethread_data_t79     static int trampoline(const thread_data_t* t) {
80         thread_func_t f = t->entryFunction;
81         void* u = t->userData;
82         int prio = t->priority;
83         char * name = t->threadName;
84         delete t;
85         setpriority(PRIO_PROCESS, 0, prio);
86 
87         if (name) {
88             androidSetThreadName(name);
89             free(name);
90         }
91         return f(u);
92     }
93 };
94 #endif
95 
androidSetThreadName(const char * name)96 void androidSetThreadName(const char* name) {
97 #if defined(__linux__)
98     // Mac OS doesn't have this, and we build libutil for the host too
99     int hasAt = 0;
100     int hasDot = 0;
101     const char *s = name;
102     while (*s) {
103         if (*s == '.') hasDot = 1;
104         else if (*s == '@') hasAt = 1;
105         s++;
106     }
107     int len = s - name;
108     if (len < 15 || hasAt || !hasDot) {
109         s = name;
110     } else {
111         s = name + len - 15;
112     }
113     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
114 #endif
115 }
116 
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)117 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
118                                void *userData,
119                                const char* threadName __android_unused,
120                                int32_t threadPriority,
121                                size_t threadStackSize,
122                                android_thread_id_t *threadId)
123 {
124     pthread_attr_t attr;
125     pthread_attr_init(&attr);
126     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
127 
128 #if defined(__ANDROID__)  /* valgrind is rejecting RT-priority create reqs */
129     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
130         // Now that the pthread_t has a method to find the associated
131         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
132         // this trampoline in some cases as the parent could set the properties
133         // for the child.  However, there would be a race condition because the
134         // child becomes ready immediately, and it doesn't work for the name.
135         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
136         // proposed but not yet accepted.
137         thread_data_t* t = new thread_data_t;
138         t->priority = threadPriority;
139         t->threadName = threadName ? strdup(threadName) : NULL;
140         t->entryFunction = entryFunction;
141         t->userData = userData;
142         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
143         userData = t;
144     }
145 #endif
146 
147     if (threadStackSize) {
148         pthread_attr_setstacksize(&attr, threadStackSize);
149     }
150 
151     errno = 0;
152     pthread_t thread;
153     int result = pthread_create(&thread, &attr,
154                     (android_pthread_entry)entryFunction, userData);
155     pthread_attr_destroy(&attr);
156     if (result != 0) {
157         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n"
158              "(android threadPriority=%d)",
159             entryFunction, result, strerror(errno), threadPriority);
160         return 0;
161     }
162 
163     // Note that *threadID is directly available to the parent only, as it is
164     // assigned after the child starts.  Use memory barrier / lock if the child
165     // or other threads also need access.
166     if (threadId != nullptr) {
167         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
168     }
169     return 1;
170 }
171 
172 #if defined(__ANDROID__)
android_thread_id_t_to_pthread(android_thread_id_t thread)173 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
174 {
175     return (pthread_t) thread;
176 }
177 #endif
178 
androidGetThreadId()179 android_thread_id_t androidGetThreadId()
180 {
181     return (android_thread_id_t)pthread_self();
182 }
183 
184 // ----------------------------------------------------------------------------
185 #else // !defined(_WIN32)
186 // ----------------------------------------------------------------------------
187 
188 /*
189  * Trampoline to make us __stdcall-compliant.
190  *
191  * We're expected to delete "vDetails" when we're done.
192  */
193 struct threadDetails {
194     int (*func)(void*);
195     void* arg;
196 };
threadIntermediary(void * vDetails)197 static __stdcall unsigned int threadIntermediary(void* vDetails)
198 {
199     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
200     int result;
201 
202     result = (*(pDetails->func))(pDetails->arg);
203 
204     delete pDetails;
205 
206     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
207     return (unsigned int) result;
208 }
209 
210 /*
211  * Create and run a new thread.
212  */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)213 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
214 {
215     HANDLE hThread;
216     struct threadDetails* pDetails = new threadDetails; // must be on heap
217     unsigned int thrdaddr;
218 
219     pDetails->func = fn;
220     pDetails->arg = arg;
221 
222 #if defined(HAVE__BEGINTHREADEX)
223     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
224                     &thrdaddr);
225     if (hThread == 0)
226 #elif defined(HAVE_CREATETHREAD)
227     hThread = CreateThread(NULL, 0,
228                     (LPTHREAD_START_ROUTINE) threadIntermediary,
229                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
230     if (hThread == NULL)
231 #endif
232     {
233         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
234         return false;
235     }
236 
237 #if defined(HAVE_CREATETHREAD)
238     /* close the management handle */
239     CloseHandle(hThread);
240 #endif
241 
242     if (id != NULL) {
243       	*id = (android_thread_id_t)thrdaddr;
244     }
245 
246     return true;
247 }
248 
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)249 int androidCreateRawThreadEtc(android_thread_func_t fn,
250                                void *userData,
251                                const char* /*threadName*/,
252                                int32_t /*threadPriority*/,
253                                size_t /*threadStackSize*/,
254                                android_thread_id_t *threadId)
255 {
256     return doCreateThread(  fn, userData, threadId);
257 }
258 
androidGetThreadId()259 android_thread_id_t androidGetThreadId()
260 {
261     return (android_thread_id_t)GetCurrentThreadId();
262 }
263 
264 // ----------------------------------------------------------------------------
265 #endif // !defined(_WIN32)
266 
267 // ----------------------------------------------------------------------------
268 
androidCreateThread(android_thread_func_t fn,void * arg)269 int androidCreateThread(android_thread_func_t fn, void* arg)
270 {
271     return createThreadEtc(fn, arg);
272 }
273 
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)274 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
275 {
276     return createThreadEtc(fn, arg, "android:unnamed_thread",
277                            PRIORITY_DEFAULT, 0, id);
278 }
279 
280 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
281 
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)282 int androidCreateThreadEtc(android_thread_func_t entryFunction,
283                             void *userData,
284                             const char* threadName,
285                             int32_t threadPriority,
286                             size_t threadStackSize,
287                             android_thread_id_t *threadId)
288 {
289     return gCreateThreadFn(entryFunction, userData, threadName,
290         threadPriority, threadStackSize, threadId);
291 }
292 
androidSetCreateThreadFunc(android_create_thread_fn func)293 void androidSetCreateThreadFunc(android_create_thread_fn func)
294 {
295     gCreateThreadFn = func;
296 }
297 
298 #if defined(__ANDROID__)
androidSetThreadPriority(pid_t tid,int pri)299 int androidSetThreadPriority(pid_t tid, int pri)
300 {
301     int rc = 0;
302     int curr_pri = getpriority(PRIO_PROCESS, tid);
303 
304     if (curr_pri == pri) {
305         return rc;
306     }
307 
308     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
309         rc = INVALID_OPERATION;
310     } else {
311         errno = 0;
312     }
313 
314     return rc;
315 }
316 
androidGetThreadPriority(pid_t tid)317 int androidGetThreadPriority(pid_t tid) {
318     return getpriority(PRIO_PROCESS, tid);
319 }
320 
321 #endif
322 
323 namespace android {
324 
325 /*
326  * ===========================================================================
327  *      Mutex class
328  * ===========================================================================
329  */
330 
331 #if !defined(_WIN32)
332 // implemented as inlines in threads.h
333 #else
334 
335 Mutex::Mutex()
336 {
337     HANDLE hMutex;
338 
339     assert(sizeof(hMutex) == sizeof(mState));
340 
341     hMutex = CreateMutex(NULL, FALSE, NULL);
342     mState = (void*) hMutex;
343 }
344 
345 Mutex::Mutex(const char* /*name*/)
346 {
347     // XXX: name not used for now
348     HANDLE hMutex;
349 
350     assert(sizeof(hMutex) == sizeof(mState));
351 
352     hMutex = CreateMutex(NULL, FALSE, NULL);
353     mState = (void*) hMutex;
354 }
355 
356 Mutex::Mutex(int /*type*/, const char* /*name*/)
357 {
358     // XXX: type and name not used for now
359     HANDLE hMutex;
360 
361     assert(sizeof(hMutex) == sizeof(mState));
362 
363     hMutex = CreateMutex(NULL, FALSE, NULL);
364     mState = (void*) hMutex;
365 }
366 
367 Mutex::~Mutex()
368 {
369     CloseHandle((HANDLE) mState);
370 }
371 
372 status_t Mutex::lock()
373 {
374     DWORD dwWaitResult;
375     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
376     return dwWaitResult != WAIT_OBJECT_0 ? -1 : OK;
377 }
378 
379 void Mutex::unlock()
380 {
381     if (!ReleaseMutex((HANDLE) mState))
382         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
383 }
384 
385 status_t Mutex::tryLock()
386 {
387     DWORD dwWaitResult;
388 
389     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
390     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
391         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
392     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
393 }
394 
395 #endif // !defined(_WIN32)
396 
397 
398 /*
399  * ===========================================================================
400  *      Condition class
401  * ===========================================================================
402  */
403 
404 #if !defined(_WIN32)
405 // implemented as inlines in threads.h
406 #else
407 
408 /*
409  * Windows doesn't have a condition variable solution.  It's possible
410  * to create one, but it's easy to get it wrong.  For a discussion, and
411  * the origin of this implementation, see:
412  *
413  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
414  *
415  * The implementation shown on the page does NOT follow POSIX semantics.
416  * As an optimization they require acquiring the external mutex before
417  * calling signal() and broadcast(), whereas POSIX only requires grabbing
418  * it before calling wait().  The implementation here has been un-optimized
419  * to have the correct behavior.
420  */
421 typedef struct WinCondition {
422     // Number of waiting threads.
423     int                 waitersCount;
424 
425     // Serialize access to waitersCount.
426     CRITICAL_SECTION    waitersCountLock;
427 
428     // Semaphore used to queue up threads waiting for the condition to
429     // become signaled.
430     HANDLE              sema;
431 
432     // An auto-reset event used by the broadcast/signal thread to wait
433     // for all the waiting thread(s) to wake up and be released from
434     // the semaphore.
435     HANDLE              waitersDone;
436 
437     // This mutex wouldn't be necessary if we required that the caller
438     // lock the external mutex before calling signal() and broadcast().
439     // I'm trying to mimic pthread semantics though.
440     HANDLE              internalMutex;
441 
442     // Keeps track of whether we were broadcasting or signaling.  This
443     // allows us to optimize the code if we're just signaling.
444     bool                wasBroadcast;
445 
446     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
447     {
448         // Increment the wait count, avoiding race conditions.
449         EnterCriticalSection(&condState->waitersCountLock);
450         condState->waitersCount++;
451         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
452         //    condState->waitersCount, getThreadId());
453         LeaveCriticalSection(&condState->waitersCountLock);
454 
455         DWORD timeout = INFINITE;
456         if (abstime) {
457             nsecs_t reltime = *abstime - systemTime();
458             if (reltime < 0)
459                 reltime = 0;
460             timeout = reltime/1000000;
461         }
462 
463         // Atomically release the external mutex and wait on the semaphore.
464         DWORD res =
465             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
466 
467         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
468 
469         // Reacquire lock to avoid race conditions.
470         EnterCriticalSection(&condState->waitersCountLock);
471 
472         // No longer waiting.
473         condState->waitersCount--;
474 
475         // Check to see if we're the last waiter after a broadcast.
476         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
477 
478         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
479         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
480 
481         LeaveCriticalSection(&condState->waitersCountLock);
482 
483         // If we're the last waiter thread during this particular broadcast
484         // then signal broadcast() that we're all awake.  It'll drop the
485         // internal mutex.
486         if (lastWaiter) {
487             // Atomically signal the "waitersDone" event and wait until we
488             // can acquire the internal mutex.  We want to do this in one step
489             // because it ensures that everybody is in the mutex FIFO before
490             // any thread has a chance to run.  Without it, another thread
491             // could wake up, do work, and hop back in ahead of us.
492             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
493                 INFINITE, FALSE);
494         } else {
495             // Grab the internal mutex.
496             WaitForSingleObject(condState->internalMutex, INFINITE);
497         }
498 
499         // Release the internal and grab the external.
500         ReleaseMutex(condState->internalMutex);
501         WaitForSingleObject(hMutex, INFINITE);
502 
503         return res == WAIT_OBJECT_0 ? OK : -1;
504     }
505 } WinCondition;
506 
507 /*
508  * Constructor.  Set up the WinCondition stuff.
509  */
510 Condition::Condition()
511 {
512     WinCondition* condState = new WinCondition;
513 
514     condState->waitersCount = 0;
515     condState->wasBroadcast = false;
516     // semaphore: no security, initial value of 0
517     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
518     InitializeCriticalSection(&condState->waitersCountLock);
519     // auto-reset event, not signaled initially
520     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
521     // used so we don't have to lock external mutex on signal/broadcast
522     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
523 
524     mState = condState;
525 }
526 
527 /*
528  * Destructor.  Free Windows resources as well as our allocated storage.
529  */
530 Condition::~Condition()
531 {
532     WinCondition* condState = (WinCondition*) mState;
533     if (condState != NULL) {
534         CloseHandle(condState->sema);
535         CloseHandle(condState->waitersDone);
536         delete condState;
537     }
538 }
539 
540 
541 status_t Condition::wait(Mutex& mutex)
542 {
543     WinCondition* condState = (WinCondition*) mState;
544     HANDLE hMutex = (HANDLE) mutex.mState;
545 
546     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
547 }
548 
549 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
550 {
551     WinCondition* condState = (WinCondition*) mState;
552     HANDLE hMutex = (HANDLE) mutex.mState;
553     nsecs_t absTime = systemTime()+reltime;
554 
555     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
556 }
557 
558 /*
559  * Signal the condition variable, allowing one thread to continue.
560  */
561 void Condition::signal()
562 {
563     WinCondition* condState = (WinCondition*) mState;
564 
565     // Lock the internal mutex.  This ensures that we don't clash with
566     // broadcast().
567     WaitForSingleObject(condState->internalMutex, INFINITE);
568 
569     EnterCriticalSection(&condState->waitersCountLock);
570     bool haveWaiters = (condState->waitersCount > 0);
571     LeaveCriticalSection(&condState->waitersCountLock);
572 
573     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
574     // down a notch.
575     if (haveWaiters)
576         ReleaseSemaphore(condState->sema, 1, 0);
577 
578     // Release internal mutex.
579     ReleaseMutex(condState->internalMutex);
580 }
581 
582 /*
583  * Signal the condition variable, allowing all threads to continue.
584  *
585  * First we have to wake up all threads waiting on the semaphore, then
586  * we wait until all of the threads have actually been woken before
587  * releasing the internal mutex.  This ensures that all threads are woken.
588  */
589 void Condition::broadcast()
590 {
591     WinCondition* condState = (WinCondition*) mState;
592 
593     // Lock the internal mutex.  This keeps the guys we're waking up
594     // from getting too far.
595     WaitForSingleObject(condState->internalMutex, INFINITE);
596 
597     EnterCriticalSection(&condState->waitersCountLock);
598     bool haveWaiters = false;
599 
600     if (condState->waitersCount > 0) {
601         haveWaiters = true;
602         condState->wasBroadcast = true;
603     }
604 
605     if (haveWaiters) {
606         // Wake up all the waiters.
607         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
608 
609         LeaveCriticalSection(&condState->waitersCountLock);
610 
611         // Wait for all awakened threads to acquire the counting semaphore.
612         // The last guy who was waiting sets this.
613         WaitForSingleObject(condState->waitersDone, INFINITE);
614 
615         // Reset wasBroadcast.  (No crit section needed because nobody
616         // else can wake up to poke at it.)
617         condState->wasBroadcast = 0;
618     } else {
619         // nothing to do
620         LeaveCriticalSection(&condState->waitersCountLock);
621     }
622 
623     // Release internal mutex.
624     ReleaseMutex(condState->internalMutex);
625 }
626 
627 #endif // !defined(_WIN32)
628 
629 // ----------------------------------------------------------------------------
630 
631 /*
632  * This is our thread object!
633  */
634 
Thread(bool canCallJava)635 Thread::Thread(bool canCallJava)
636     : mCanCallJava(canCallJava),
637       mThread(thread_id_t(-1)),
638       mLock("Thread::mLock"),
639       mStatus(OK),
640       mExitPending(false),
641       mRunning(false)
642 #if defined(__ANDROID__)
643       ,
644       mTid(-1)
645 #endif
646 {
647 }
648 
~Thread()649 Thread::~Thread()
650 {
651 }
652 
readyToRun()653 status_t Thread::readyToRun()
654 {
655     return OK;
656 }
657 
run(const char * name,int32_t priority,size_t stack)658 status_t Thread::run(const char* name, int32_t priority, size_t stack)
659 {
660     LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");
661 
662     Mutex::Autolock _l(mLock);
663 
664     if (mRunning) {
665         // thread already started
666         return INVALID_OPERATION;
667     }
668 
669     // reset status and exitPending to their default value, so we can
670     // try again after an error happened (either below, or in readyToRun())
671     mStatus = OK;
672     mExitPending = false;
673     mThread = thread_id_t(-1);
674 
675     // hold a strong reference on ourself
676     mHoldSelf = sp<Thread>::fromExisting(this);
677 
678     mRunning = true;
679 
680     bool res;
681     if (mCanCallJava) {
682         res = createThreadEtc(_threadLoop,
683                 this, name, priority, stack, &mThread);
684     } else {
685         res = androidCreateRawThreadEtc(_threadLoop,
686                 this, name, priority, stack, &mThread);
687     }
688 
689     if (res == false) {
690         mStatus = UNKNOWN_ERROR;   // something happened!
691         mRunning = false;
692         mThread = thread_id_t(-1);
693         mHoldSelf.clear();  // "this" may have gone away after this.
694 
695         return UNKNOWN_ERROR;
696     }
697 
698     // Do not refer to mStatus here: The thread is already running (may, in fact
699     // already have exited with a valid mStatus result). The OK indication
700     // here merely indicates successfully starting the thread and does not
701     // imply successful termination/execution.
702     return OK;
703 
704     // Exiting scope of mLock is a memory barrier and allows new thread to run
705 }
706 
_threadLoop(void * user)707 int Thread::_threadLoop(void* user)
708 {
709     Thread* const self = static_cast<Thread*>(user);
710 
711     sp<Thread> strong(self->mHoldSelf);
712     wp<Thread> weak(strong);
713     self->mHoldSelf.clear();
714 
715 #if defined(__ANDROID__)
716     // this is very useful for debugging with gdb
717     self->mTid = gettid();
718 #endif
719 
720     bool first = true;
721 
722     do {
723         bool result;
724         if (first) {
725             first = false;
726             self->mStatus = self->readyToRun();
727             result = (self->mStatus == OK);
728 
729             if (result && !self->exitPending()) {
730                 // Binder threads (and maybe others) rely on threadLoop
731                 // running at least once after a successful ::readyToRun()
732                 // (unless, of course, the thread has already been asked to exit
733                 // at that point).
734                 // This is because threads are essentially used like this:
735                 //   (new ThreadSubclass())->run();
736                 // The caller therefore does not retain a strong reference to
737                 // the thread and the thread would simply disappear after the
738                 // successful ::readyToRun() call instead of entering the
739                 // threadLoop at least once.
740                 result = self->threadLoop();
741             }
742         } else {
743             result = self->threadLoop();
744         }
745 
746         // establish a scope for mLock
747         {
748         Mutex::Autolock _l(self->mLock);
749         if (result == false || self->mExitPending) {
750             self->mExitPending = true;
751             self->mRunning = false;
752             // clear thread ID so that requestExitAndWait() does not exit if
753             // called by a new thread using the same thread ID as this one.
754             self->mThread = thread_id_t(-1);
755             // note that interested observers blocked in requestExitAndWait are
756             // awoken by broadcast, but blocked on mLock until break exits scope
757             self->mThreadExitedCondition.broadcast();
758             break;
759         }
760         }
761 
762         // Release our strong reference, to let a chance to the thread
763         // to die a peaceful death.
764         strong.clear();
765         // And immediately, re-acquire a strong reference for the next loop
766         strong = weak.promote();
767     } while(strong != nullptr);
768 
769     return 0;
770 }
771 
requestExit()772 void Thread::requestExit()
773 {
774     Mutex::Autolock _l(mLock);
775     mExitPending = true;
776 }
777 
requestExitAndWait()778 status_t Thread::requestExitAndWait()
779 {
780     Mutex::Autolock _l(mLock);
781     if (mThread == getThreadId()) {
782         ALOGW(
783         "Thread (this=%p): don't call waitForExit() from this "
784         "Thread object's thread. It's a guaranteed deadlock!",
785         this);
786 
787         return WOULD_BLOCK;
788     }
789 
790     mExitPending = true;
791 
792     while (mRunning == true) {
793         mThreadExitedCondition.wait(mLock);
794     }
795     // This next line is probably not needed any more, but is being left for
796     // historical reference. Note that each interested party will clear flag.
797     mExitPending = false;
798 
799     return mStatus;
800 }
801 
join()802 status_t Thread::join()
803 {
804     Mutex::Autolock _l(mLock);
805     if (mThread == getThreadId()) {
806         ALOGW(
807         "Thread (this=%p): don't call join() from this "
808         "Thread object's thread. It's a guaranteed deadlock!",
809         this);
810 
811         return WOULD_BLOCK;
812     }
813 
814     while (mRunning == true) {
815         mThreadExitedCondition.wait(mLock);
816     }
817 
818     return mStatus;
819 }
820 
isRunning() const821 bool Thread::isRunning() const {
822     Mutex::Autolock _l(mLock);
823     return mRunning;
824 }
825 
826 #if defined(__ANDROID__)
getTid() const827 pid_t Thread::getTid() const
828 {
829     // mTid is not defined until the child initializes it, and the caller may need it earlier
830     Mutex::Autolock _l(mLock);
831     pid_t tid;
832     if (mRunning) {
833         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
834         tid = pthread_gettid_np(pthread);
835     } else {
836         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
837         tid = -1;
838     }
839     return tid;
840 }
841 #endif
842 
exitPending() const843 bool Thread::exitPending() const
844 {
845     Mutex::Autolock _l(mLock);
846     return mExitPending;
847 }
848 
849 
850 
851 };  // namespace android
852