1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_VECTOR_H
18 #define ANDROID_VECTOR_H
19 
20 #include <stdint.h>
21 #include <sys/types.h>
22 
23 #include <log/log.h>
24 #include <utils/TypeHelpers.h>
25 #include <utils/VectorImpl.h>
26 #ifndef __has_attribute
27 #define __has_attribute(x) 0
28 #endif
29 
30 /*
31  * Used to exclude some functions from CFI.
32  */
33 #if __has_attribute(no_sanitize)
34 #define UTILS_VECTOR_NO_CFI __attribute__((no_sanitize("cfi")))
35 #else
36 #define UTILS_VECTOR_NO_CFI
37 #endif
38 
39 // ---------------------------------------------------------------------------
40 
41 namespace android {
42 
43 template <typename TYPE>
44 class SortedVector;
45 
46 /*!
47  * The main templated vector class ensuring type safety
48  * while making use of VectorImpl.
49  * This is the class users want to use.
50  *
51  * DO NOT USE: please use std::vector
52  */
53 
54 template <class TYPE>
55 class Vector : private VectorImpl
56 {
57 public:
58             typedef TYPE    value_type;
59 
60     /*!
61      * Constructors and destructors
62      */
63 
64                             Vector();
65                             Vector(const Vector<TYPE>& rhs);
66     explicit                Vector(const SortedVector<TYPE>& rhs);
67     virtual                 ~Vector();
68 
69     /*! copy operator */
70     Vector<TYPE>& operator=(const Vector<TYPE>& rhs);        // NOLINT(cert-oop54-cpp)
71     Vector<TYPE>& operator=(const SortedVector<TYPE>& rhs);  // NOLINT(cert-oop54-cpp)
72 
73     /*
74      * empty the vector
75      */
76 
clear()77     inline  void            clear()             { VectorImpl::clear(); }
78 
79     /*!
80      * vector stats
81      */
82 
83     //! returns number of items in the vector
size()84     inline  size_t          size() const                { return VectorImpl::size(); }
85     //! returns whether or not the vector is empty
isEmpty()86     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
87     //! returns how many items can be stored without reallocating the backing store
capacity()88     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
89     //! sets the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)90     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
91 
92     /*!
93      * set the size of the vector. items are appended with the default
94      * constructor, or removed from the end as needed.
95      */
resize(size_t size)96     inline  ssize_t         resize(size_t size)         { return VectorImpl::resize(size); }
97 
98     /*!
99      * C-style array access
100      */
101 
102     //! read-only C-style access
103     inline  const TYPE*     array() const;
104     //! read-write C-style access
105             TYPE*           editArray();
106 
107     /*!
108      * accessors
109      */
110 
111     //! read-only access to an item at a given index
112     inline  const TYPE&     operator [] (size_t index) const;
113     //! alternate name for operator []
114     inline  const TYPE&     itemAt(size_t index) const;
115     //! stack-usage of the vector. returns the top of the stack (last element)
116             const TYPE&     top() const;
117 
118     /*!
119      * modifying the array
120      */
121 
122     //! copy-on write support, grants write access to an item
123             TYPE&           editItemAt(size_t index);
124     //! grants right access to the top of the stack (last element)
125             TYPE&           editTop();
126 
127             /*!
128              * append/insert another vector
129              */
130 
131     //! insert another vector at a given index
132             ssize_t         insertVectorAt(const Vector<TYPE>& vector, size_t index);
133 
134     //! append another vector at the end of this one
135             ssize_t         appendVector(const Vector<TYPE>& vector);
136 
137 
138     //! insert an array at a given index
139             ssize_t         insertArrayAt(const TYPE* array, size_t index, size_t length);
140 
141     //! append an array at the end of this vector
142             ssize_t         appendArray(const TYPE* array, size_t length);
143 
144             /*!
145              * add/insert/replace items
146              */
147 
148     //! insert one or several items initialized with their default constructor
149     inline  ssize_t         insertAt(size_t index, size_t numItems = 1);
150     //! insert one or several items initialized from a prototype item
151             ssize_t         insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
152     //! pop the top of the stack (removes the last element). No-op if the stack's empty
153     inline  void            pop();
154     //! pushes an item initialized with its default constructor
155     inline  void            push();
156     //! pushes an item on the top of the stack
157             void            push(const TYPE& item);
158     //! same as push() but returns the index the item was added at (or an error)
159     inline  ssize_t         add();
160     //! same as push() but returns the index the item was added at (or an error)
161             ssize_t         add(const TYPE& item);
162     //! replace an item with a new one initialized with its default constructor
163     inline  ssize_t         replaceAt(size_t index);
164     //! replace an item with a new one
165             ssize_t         replaceAt(const TYPE& item, size_t index);
166 
167     /*!
168      * remove items
169      */
170 
171     //! remove several items
172     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
173     //! remove one item
removeAt(size_t index)174     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
175 
176     /*!
177      * sort (stable) the array
178      */
179 
180      typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
181      typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
182 
183      inline status_t        sort(compar_t cmp);
184      inline status_t        sort(compar_r_t cmp, void* state);
185 
186      // for debugging only
getItemSize()187      inline size_t getItemSize() const { return itemSize(); }
188 
189 
190      /*
191       * these inlines add some level of compatibility with STL. eventually
192       * we should probably turn things around.
193       */
194      typedef TYPE* iterator;
195      typedef TYPE const* const_iterator;
196 
begin()197      inline iterator begin() { return editArray(); }
end()198      inline iterator end()   { return editArray() + size(); }
begin()199      inline const_iterator begin() const { return array(); }
end()200      inline const_iterator end() const   { return array() + size(); }
reserve(size_t n)201      inline void reserve(size_t n) { setCapacity(n); }
empty()202      inline bool empty() const{ return isEmpty(); }
push_back(const TYPE & item)203      inline void push_back(const TYPE& item)  { insertAt(item, size(), 1); }
push_front(const TYPE & item)204      inline void push_front(const TYPE& item) { insertAt(item, 0, 1); }
erase(iterator pos)205      inline iterator erase(iterator pos) {
206          ssize_t index = removeItemsAt(static_cast<size_t>(pos-array()));
207          return begin() + index;
208      }
209 
210 protected:
211     virtual void    do_construct(void* storage, size_t num) const;
212     virtual void    do_destroy(void* storage, size_t num) const;
213     virtual void    do_copy(void* dest, const void* from, size_t num) const;
214     virtual void    do_splat(void* dest, const void* item, size_t num) const;
215     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
216     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
217 };
218 
219 // ---------------------------------------------------------------------------
220 // No user serviceable parts from here...
221 // ---------------------------------------------------------------------------
222 
223 template<class TYPE> inline
Vector()224 Vector<TYPE>::Vector()
225     : VectorImpl(sizeof(TYPE),
226                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
227                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
228                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
229                 )
230 {
231 }
232 
233 template<class TYPE> inline
Vector(const Vector<TYPE> & rhs)234 Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
235     : VectorImpl(rhs) {
236 }
237 
238 template<class TYPE> inline
Vector(const SortedVector<TYPE> & rhs)239 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
240     : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
241 }
242 
243 template<class TYPE> inline
~Vector()244 Vector<TYPE>::~Vector() {
245     finish_vector();
246 }
247 
248 template <class TYPE>
249 inline Vector<TYPE>& Vector<TYPE>::operator=(const Vector<TYPE>& rhs)  // NOLINT(cert-oop54-cpp)
250 {
251     VectorImpl::operator=(rhs);
252     return *this;
253 }
254 
255 template <class TYPE>
256 inline Vector<TYPE>& Vector<TYPE>::operator=(
257         const SortedVector<TYPE>& rhs)  // NOLINT(cert-oop54-cpp)
258 {
259     VectorImpl::operator=(static_cast<const VectorImpl&>(rhs));
260     return *this;
261 }
262 
263 template<class TYPE> inline
array()264 const TYPE* Vector<TYPE>::array() const {
265     return static_cast<const TYPE *>(arrayImpl());
266 }
267 
268 template<class TYPE> inline
editArray()269 TYPE* Vector<TYPE>::editArray() {
270     return static_cast<TYPE *>(editArrayImpl());
271 }
272 
273 
274 template<class TYPE> inline
275 const TYPE& Vector<TYPE>::operator[](size_t index) const {
276     LOG_FATAL_IF(index>=size(),
277             "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
278             int(index), int(size()));
279     return *(array() + index);
280 }
281 
282 template<class TYPE> inline
itemAt(size_t index)283 const TYPE& Vector<TYPE>::itemAt(size_t index) const {
284     return operator[](index);
285 }
286 
287 template<class TYPE> inline
top()288 const TYPE& Vector<TYPE>::top() const {
289     return *(array() + size() - 1);
290 }
291 
292 template<class TYPE> inline
editItemAt(size_t index)293 TYPE& Vector<TYPE>::editItemAt(size_t index) {
294     return *( static_cast<TYPE *>(editItemLocation(index)) );
295 }
296 
297 template<class TYPE> inline
editTop()298 TYPE& Vector<TYPE>::editTop() {
299     return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
300 }
301 
302 template<class TYPE> inline
insertVectorAt(const Vector<TYPE> & vector,size_t index)303 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
304     return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
305 }
306 
307 template<class TYPE> inline
appendVector(const Vector<TYPE> & vector)308 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
309     return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
310 }
311 
312 template<class TYPE> inline
insertArrayAt(const TYPE * array,size_t index,size_t length)313 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
314     return VectorImpl::insertArrayAt(array, index, length);
315 }
316 
317 template<class TYPE> inline
appendArray(const TYPE * array,size_t length)318 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
319     return VectorImpl::appendArray(array, length);
320 }
321 
322 template<class TYPE> inline
insertAt(const TYPE & item,size_t index,size_t numItems)323 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
324     return VectorImpl::insertAt(&item, index, numItems);
325 }
326 
327 template<class TYPE> inline
push(const TYPE & item)328 void Vector<TYPE>::push(const TYPE& item) {
329     return VectorImpl::push(&item);
330 }
331 
332 template<class TYPE> inline
add(const TYPE & item)333 ssize_t Vector<TYPE>::add(const TYPE& item) {
334     return VectorImpl::add(&item);
335 }
336 
337 template<class TYPE> inline
replaceAt(const TYPE & item,size_t index)338 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
339     return VectorImpl::replaceAt(&item, index);
340 }
341 
342 template<class TYPE> inline
insertAt(size_t index,size_t numItems)343 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
344     return VectorImpl::insertAt(index, numItems);
345 }
346 
347 template<class TYPE> inline
pop()348 void Vector<TYPE>::pop() {
349     VectorImpl::pop();
350 }
351 
352 template<class TYPE> inline
push()353 void Vector<TYPE>::push() {
354     VectorImpl::push();
355 }
356 
357 template<class TYPE> inline
add()358 ssize_t Vector<TYPE>::add() {
359     return VectorImpl::add();
360 }
361 
362 template<class TYPE> inline
replaceAt(size_t index)363 ssize_t Vector<TYPE>::replaceAt(size_t index) {
364     return VectorImpl::replaceAt(index);
365 }
366 
367 template<class TYPE> inline
removeItemsAt(size_t index,size_t count)368 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
369     return VectorImpl::removeItemsAt(index, count);
370 }
371 
372 template<class TYPE> inline
sort(Vector<TYPE>::compar_t cmp)373 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
374     return VectorImpl::sort(reinterpret_cast<VectorImpl::compar_t>(cmp));
375 }
376 
377 template<class TYPE> inline
sort(Vector<TYPE>::compar_r_t cmp,void * state)378 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
379     return VectorImpl::sort(reinterpret_cast<VectorImpl::compar_r_t>(cmp), state);
380 }
381 
382 // ---------------------------------------------------------------------------
383 
384 template<class TYPE>
do_construct(void * storage,size_t num)385 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_construct(void* storage, size_t num) const {
386     construct_type( reinterpret_cast<TYPE*>(storage), num );
387 }
388 
389 template<class TYPE>
do_destroy(void * storage,size_t num)390 void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
391     destroy_type( reinterpret_cast<TYPE*>(storage), num );
392 }
393 
394 template<class TYPE>
do_copy(void * dest,const void * from,size_t num)395 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
396     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
397 }
398 
399 template<class TYPE>
do_splat(void * dest,const void * item,size_t num)400 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
401     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
402 }
403 
404 template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)405 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
406     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
407 }
408 
409 template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)410 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
411     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
412 }
413 
414 }  // namespace android
415 
416 // ---------------------------------------------------------------------------
417 
418 #endif // ANDROID_VECTOR_H
419